NOREA"

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps

in control
A study report by NOREA

Author: S. Gangaram Panday MSc RE CISA - Brightlyn

Update 2026: Workgroup DevOps & Agile in Control

© 2026 NOREA, All rights reserved
Postbus 242, 2130AE Hoofddorp
phone: 088-4960380

e-mail: norea@norea.nl
www.norea.nl

Accountability

This study report has been published by the NOREA, the professional organization of IT
auditors in the Netherlands, and has been developed to give Dutch qualified IT auditors
(Register IT auditors, RE’s) guidance in assessing the quality of Agile and DevOps practices.

Version control

1.0 09-2019 Publication of initial version by S. Gangaram
Panday

2.0 01-2026 Updates to several paragraphs of this study
report

Updates to the control descriptions
Merging of control 7 & 8

Addition of control 14 as a new control
Addition of maturity levels

Participants of the DevOps & Agile in Control work group

e Sandeep Gangaram Panday MSc RE CISA (chair)

e Pieter Jolen MSc RE

e ir. Jean-Jacques Bistervels RE CIA CFSA CDPSE CRISC CCP
e Zubair Yaseen MSc RE RA CIA

e Than Son Nguijen

e Edwin Galama RE RA

e Paul van Kemenade

e Boris Cuijpers

The DevOps Control Framework is also available in Excel:
https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-

development

DevOps in Control — January 2026
Page 2 van 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development
https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development

Contents

1. Introduction

1.1 Motivation and goal

1.2 Method of research and approach
1.3 Limitations on the scope

1.4 Layout of the report

2. Waterfall, Agile and DevOps
2.1 Waterfall

2.2 Agile
2.3 DevOps

3. DevOps in Control

3.1 Determining the methodology being used

3.2 Culture maturity assessment
3.3 Control assessment

3.4 The DevOps control framework

4. Conclusion

uuuuu
1001

DE BEROEPSORGANISATIE VAN IT-AUDITORS

N O v~ D

N O 00 0

19
20

22
29

43

DevOps in Control — January 2026
Page 3 van 49

1. Introduction

In recent years, Agile, DevOps and now DevSecOps have become the dominant approaches
for modern software delivery, not only within technology-driven companies but also in highly
regulated sectors such as financial services, government, and critical infrastructure.
Organizations increasingly rely on autonomous, cross-functional teams, cloud-native
platforms, automated pipelines, and integrated security tooling. Delivery cycles have
accelerated dramatically, with many teams deploying multiple times per day using
standardized ClI/CD capabilities. Documentation, quality checks, and even security controls
are embedded directly into tools, logs, and automated workflows rather than produced as
traditional artefacts.

For IT auditors, risk professionals and security specialists, this shift introduces new challenges
and expectations. Many established audit frameworks were designed for phased
development, long release cycles, and manual approval processes. These assumptions no
longer align with environments where changes are deployed continuously, infrastructure is
defined as code, testing is automated, and system-generated evidence replaces traditional
documentation. At the same time, regulators increasingly expect organizations to
demonstrate operational resilience, secure software development, and robust change
governance. Regulations such as DORA and NIS2 and updated ISO standards highlight the
importance of understanding modern delivery practices and the risks inherent in
high-velocity, highly automated environments.

This updated 2026 edition of the DevOps in Control study report aims to bridge the gap
between modern engineering practices and the expectations of auditors and risk
professionals. It provides practical guidance on assessing Agile and DevOps environments,
supported by a control framework and maturity model that reflect the current state of the
industry. The goal is to help auditors evaluate both the technical and cultural aspects of these
practices, understand where automated controls can be relied upon, and recognize where
additional assurance activities are needed.

1.1 Motivation and goal

NOREA is the Dutch association of IT auditors. As stated on its website the goal of NOREA is
threefold:

1. Promote the quality of the professional practice of IT auditors
2. Promote the further development of the IT audit profession
3. Take care of the common interest of the members

The second goal, especially, is the reason NOREA identified the need to publish a study report
on a control approach for new software development techniques that are being widely used
nowadays. Several research papers and whitepapers conclude that DevOps indeed requires a
different control approach. One important example is the published COBIT 2019 framework
which mentions that DevOps “definitely requires specific guidance” [40].

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 4 van 49

DevOps is a fact and the number of organizations adopting the DevOps principles is growing
rapidly, as appears from the availability of several detailed step-by-step implementation
guidance with the inclusion of use cases of many organizations [1] [2]. Rejecting the transition
to DevOps is not an option anymore. Especially because we also see application of these new
approaches in (highly) regulated markets which is often the focus of many auditors. A specific
example is the cloud.gov platform [4] of the US Federal Government, a Platform as a Service
(PaaS) solution for US government agencies. This platform allows the use of Agile and DevOps
methodologies, while at the same time meeting the requirements of a highly regulated
environment (FedRAMP and FISMA) [5]. We want to take this as an inspirational example for
applying these principles within highly regulated environments.

Or as stated by Gartner: “Every business is a digital business. Every company is a software
company. The key to gaining and sustaining competitive advantage in digital business, and a
role in a digital society, will be in the development and continuous improvement of new IT-
enabled capabilities and services for customers” [41].

The goal for this study report is to provide IT auditors, but also other information security
and risk professionals, with a basic introduction and a control framework to mitigate the key
IT risks associated with Agile and DevOps principles and to evaluate the level of maturity of
controls.

We have not specifically referenced which controls are required at a minimum for the Annual
accounts audit because we want to emphasize that there is not one universal Agile or DevOps
approach (as also emphasized in COBIT 2019). Each implementation, that we as auditors
might observe, will have its own unique approach towards implementing the core Agile and
DevOps principles. For example, a DevOps setup that is fully focused on the e-commerce
front-end will be different from the back-end setup of a bank. In the end the IT auditor will
therefore need to properly assess the specific implementation that needs to be audited and
cautiously select the proper controls from the control framework presented in this study
report.

1.2 Method of research and approach

The DevOps (maturity) control framework that is presented in this study report is built upon
the ever-increasing number of articles, (research) papers, books and best practice models
about Agile and DevOps (see the Reference list in Appendix A). The leading paper with
guidance on DevOps auditing is the DevOps Audit Defense Toolkit which is currently the most
elaborative control framework for DevOps and gives detailed work instructions on how to
implement and assess change management within DevOps environments [6]. However, we
stress that we wanted only to provide a ‘lean and mean’ framework which covers the most
detrimental risks in a DevOps environment.

We additionally want to state that the vision, knowledge and approaches presented in this
paper are also based on the authors experiences with auditing software development projects
where Waterfall, Agile and DevOps techniques were applied. Additionally, several interviews
with engineers, IT managers and project managers were part of the research.

Initially with the first version of the report, the control framework was not mapped with best
practice IT governance or control models, because there was no fit with the models available
at the time. At the end of 2018, ISACA published its 2019 upgrade of COBIT (Control
Objectives for Information and Related Technologies), which acknowledges the need for a
different control approach to accommodate auditing of DevOps environments. Because the
COBIT frameworks are widely accepted and used by IT auditors below is a summary of the

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 5 van 49

most important changes and/or additions in COBIT 2019 compared to the previous version
(COBIT 5) regarding this subject:

e Emphasis on the importance of tailoring the IT governance and control frameworks
to the specific organizational context instead of using off-the-shelf control
frameworks.

e Acknowledging the importance of the cultural aspect by mentioning that senior
management must actively steer on achieving a different mindset and culture for
delivering value from IT.

e Rectification of the often encountered (i.e., narrow) interpretation suggested by the
GRC (Governance, Risk and Compliance) acronym. The GRC acronym itself implicitly
suggests that compliance and risk represent the spectrum of governance (“we make
the mistake that risk and compliance direct governance whereas they go hand-in-
hand and support each other”).

e Mentioning of open and flexible architectures and control frameworks, aligned to
major standards, as one of the three principles of a governance framework.

e Adding the Design Factors and Focus Areas to the scoping and creation of the
framework. DevOps is specifically included as one of the Focus Areas (because
"DevOps is a current theme in the marketplace and definitely requires specific
guidance").

e Based on the COBIT 2019 Design Guide, specifically the following COBIT controls are
recommended to be included (and tailored) for DevOps environments: BAIO2
(Managed requirements definition), BAIO3 (Managed solutions identification and
build) and BAIO6 (Managed IT changes), along with a reference to a yet to be
published DevOps paper. These controls have been included in our DevOps control
framework in paragraph 3.4. The reader will therefore see that the presented control
framework has been aligned with COBIT 2019 on several aspects.

Furthermore, alignment has been sought with the security control framework developed by
the Secure Software Alliance (SSA) specifically for Agile software development. This framework
provides security related controls for all phases of software development and was initially
created by a group of Dutch software security firms supported by the Dutch Ministry of
Economic Affairs. The SSA framework is free for use and can be downloaded from their site
[15]. The framework consists of 4 control domains: Context, Threats, Implementation and
Verification. In this guide we have mostly focused on the controls within the Implementation
and Verification phases of the SSA framework.

1.3 Limitations on the scope

We developed this study report using an Agile approach as well, which means that this study
report is the second iteration. Based on market demand and interest, we will define the focus
point for our next iteration. With this approach we also want to emphasize that this second
iteration is by no means meant to be complete and covering the full picture but has a focus
on the essential risks and associated controls that we gathered based on feedback from the
first iteration.

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 6 van 49

1.4 Layout of the report

In chapter 2 we briefly introduce the Waterfall methodology as an example of a more
traditional software development methodology because Waterfall is the most well-know
methodology among IT auditors. Chapter 2 also includes an introduction of the Agile and
DevOps software development principles to provide a comparison between these 3
approaches and to be able to better understand the control framework presented in paragraph
3.4.

In chapter 3 we present the approach on auditing Agile and DevOps environments. In
paragraph 3.1 we introduce the auditor with some guidance to make sure the right type of
controls is selected. In paragraph 3.2 a short introduction of the relevance and impact of the
Agile and DevOps culture is given. The reader is provided with some references of models
that can be used to measure the Agile and DevOps culture within a team which are useful
tools for the auditors. In paragraph 3.3 guidance is provided on which testing approach to
select and finally in paragraph 3.4 the Agile and DevOps (maturity) control framework is
presented.

In chapter 4 the updated conclusion is presented.

0001
1001
1001
0010/

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 7 van 49

2. Waterfall, Agile and DevOps

2.1 Waterfall

Wikipedia provides the following definition (July 2019): “The waterfall model is a breakdown
of project activities into linear sequential phases, where each phase depends on the
deliverables of the previous one and corresponds to a specialization of tasks. The approach
is typical for certain areas of engineering design. In software development, it tends to be
among the less iterative and flexible approaches, as progress flows in largely one direction
("downwards" like a waterfall) through the phases of conception, initiation, analysis, design,
construction,

testing, deployment and maintenance.” [18].

To properly understand the waterfall software development methodology, it is important to
take a closer look at the time when waterfall originated and how it originated. Below we
attempt to give a short summary of this history:

e The basic structures of the waterfall model in software development as we currently
know it were first introduced in 1956 by Herbert D. Benington [18], although not
under the name of “waterfall”. It consisted of 9 phases, see appendix C for an
overview [19].

e In an article published by Winston W. Royce in 1970 this model of Benington was for
the first time more formally documented into a methodology [20]. At that time the
term “waterfall” was not used either. Important to note is that Royce explains that
the typical downward flow of the waterfall method is flawed. Royce introduces
iteration to this model. However, still at a quite modest level: “as a step progresses
and the design is further detailed, there is an iteration with the preceding and
succeeding steps but rarely with the more remote steps in the sequence.”

e It appears that the first use of the term “waterfall” was in the 1976 paper by Bell and
Thayer [21]. In this paper they refer to the top-down software development
methodology of Royce and call this approach the “the waterfall of development
activities” [21].

e In 1983 Herbert D. Benington, who initially introduced the waterfall concept,
republished his article with a new foreword in which he explains that in his initial
publication he did “omit a number of important approaches, which | will say a little
more about below” [20]. Some of the additional approaches that he mentions are:

o The application of a structured, highly disciplined engineering mindset for
developers.

o The waterfall top-down approach is not to be interpreted too literally: “This
attitude can be terribly misleading and dangerous. To stretch an analogy
slightly, it is like saying that we must specify the characteristics of a rocket
engine before measuring the burning properties of liquid hydrogen” [20].

o Experimental prototypes are important to develop and based on the result
change the specifications.

NOREA!

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 8 van 49

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Engineering_design
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Waterfall
https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_construction
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Software_maintenance

o The biggest mistake his team made: the attempt to make a too large release.
He would now focus on smaller changes and test and evolve the system from
there.

Strangely enough, at that time the sequential / one-direction waterfall methodology was
already embedded within the industry and his feedback did not result in changing the
methodology (of which he was the founder).

Key characteristics of the waterfall methodology [23]:

- Run from a project organization (timely organization).

- Rigid planning.

- Sequential one-direction flow of activities.

- Different and separated teams per phase.

- Need for extensive documentation (because teams are working in separation).
- Hand-over to normal IT operations department after project is delivered.

In practice we see the waterfall methodology mostly being implemented with the assistance
of the PRINCE2 project management framework.

Figure 1 provides an overview of the waterfall phases which form a software development
sequence (a “waterfall”). In some articles these phases appear with slightly different names.

I System Requirements

v
v

Software Requirements
Analysis
Program Design
Coding
Testing

Operation

Figure 1: The waterfall model [23]
2.2 Agile

The Agile approach was introduced as the natural counterpart of the Waterfall methodology
to resolve issues associated with the latter. Agile development does not apply a plan-driven
approach but an iterative approach. It is not defined as a methodology but as a set of
principles to be applied together in order to achieve an intended goal. The 12 Agile
development principles and their origin can be found in the Agile Manifesto [10]. The Agile
Manifesto was defined to enable better ways for developing valuable software more rapidly
(principle 1).

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 9 van 49

In most literature Agile development is perceived as an evolution from several practices and
alternative methodologies for software development designed in the 90’s. Examples of such
practices are the Theory of Constraints [7]. Lean Manufacturing [8] and, very relevant to
auditors, the famous Deming’s principles [16], which had already proven their effectiveness
in the manufacturing and automotive industries [14].

Key agile development characteristics according to van Casteren [23]:

- Iterative development with frequent visible results as output (principle 3).

- Focus on interaction and communication (principle 6).

- Reduction of resource-intensive intermediate artifacts e.g. backlog vs formalized
requirements document (principle 10).

- Feature planning and prioritization performed in short iterative cycles (principle 3).

- Fast decision making (principle 4).

- Close customer relationships for timely assessment and feedback on increments
(principle 4).

Given the fact that the Agile development approach is not a methodology, there are currently
many Agile development best practices available, which all share common characteristics but
each having their own nuances and specializations. We can therefore consider “Agile” to
constitute an umbrella term, which covers among others; Scrum, Kanban, Extreme
Programming (XP), Crystal and Lean software development practices. In figure 2 below an
overview is provided of Scrum for implementing agile principles.

Customers
Stakeholders
Users
Daily
scrum
Customers, stakeholders 24 hours Every day starts with a scrum,
Features and users lay down thelr ameeting in which developers

requirements in the form = tell what they have done, will
of features. = do any problems they expect.

The product owner lays

down a product backlo
Product owner P 9

based on the features I S p rint \
|
1-4 weeks |
The backlog contains /
Product backlog prioritized features
bugs, functions and
requirements
\
\
Sprint backlog Tasks /\ Review / Demo Internal or external release
/I
The sprint backlog contains the Developers show the result This release will serve as a
items from the backlog that had of the sprint, the customer starting point for a new
highest priority glives feedback iteration

During the sprint tasks
from the sprint backlog
are being expanded

Figure 2 Scrum schematic overview [23]

We still see the main phases of Waterfall in the Agile approach; however, they appear in a
shorter and iterative fashion. Basically, each iteration is a self-contained mini project with
activities that relate to the Waterfall phases.

DevOps in Control — January 2026
Page 10 van 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

Tools & technology

In order to achieve the desired agility, the use of suitable development tools, a high level of
automation and a constant drive for technical excellence is a pre-requisite (principle 9). Effort
is put on the practices to remove the barriers in collaboration more effectively together with
stakeholder’s, while being able to welcome and respond to changes. The tools used for Agile
development are typically limited to software development activities, the reason being that
development and operations teams are still separated. Therefore, software development and
software deployment/release (operations) are still managed by separate teams, using
separate ways of working.

Out of this focus on automation rose the Infrastructure as Code practice and the widespread
use of Version Control Systems combined with automated builds (Continuous Integration) and
automated deployments (Continuous delivery). These practices are closely related to Agile
and almost always applied by Agile development teams.

Version control

A Version Control System (VCS) allows developers to work on code from different workstations
at different locations (pull) while still being able to integrate their code into a single repository
(merge), which can be used later to deploy the entire system. The VCS is also used to
document and track system configuration files (see Infrastructure as Code). The consistent
use of a VCS is considered the first step on the path to Continuous Integration (Cl) and
Continuous Delivery (CD); see below.

Infrastructure as Code

Infrastructure as Code (IaC) is the practice to manage and provision infrastructure through
code and automation instead of manually (e.g. by logging in with SSH into a host and
executing commands). 1aC is for example used to create and change containers, instances,
servers, and complete environments from already created scripts/templates. By maintaining
these automation scripts in the VCS, a fast repeatable and auditable method is achieved for
the creation and maintenance of infrastructure components based on best practices (e.g.
security baselines).

With 1aC, several powerful software development practices have been adopted within the
operations field such as use of VCS, peer review, automated testing, release tagging and
release promotion [25]. The application of laC also greatly enhanced the audit of the
configuration management process for auditors.

DE BEROEPSORGANISATIE VAN IT-AUDITORS DeVODS in Control — January 2026
Page 11 van 49

§ Infrastructure as Code

Application Infrastructure Configuration Operational
Packaging Provisioning Management Configuration
Management
Customize, Create, modify & Express state of Keep track of
configure & test delete infrastructure infrastucture using core infrastructure
the application using code/APls code/APls objects
\ \ \
Code /. Version control } Code review) Integrate / Deploy
/ /
/ I

Figure 3 Infrastructure as code [38]

2.3 DevOps

Gradually Agile development expanded into other areas within IT of which primarily IT
operations. This union of previously separated development and operations teams has been
called DevOps and is basically the next step in the evolution of Agile to further increase rapid
value delivery to the end customer by streamlining and automating the entire software
delivery lifecycle. As such, DevOps is not a methodology nor an approach but a philosophy
and a way or working to enable collaboration between previously separated
teams/departments, using a high level of automation. To achieve this, several other
methodologies are applied, some of which even outside the software development field (e.g.
social psychological beliefs).The goal of DevOps is to reduce lead time in all the software
delivery steps from months or weeks to minutes while maintaining control and consistency
across all environments. This is only possible by applying a high degree of automation in the
software delivery lifecycle which in DevOps terminology is called the Delivery pipeline. The
focus of this automation lies in the integration of the end-to-end activities needed to
transform a vision to a workable feature. Next to the high focus on automation of the
complete pipeline, DevOps has an important prerequisite, namely the culture. It is explicitly
emphasized that the cultivation of the right culture is critical to make previously separate
teams working together. From all the years of applying Agile in software development, one
important lesson learnt was that the human factor appeared to be a limiting factor in
increasing the level of agility.

Taking the above into account, we have formulated the following definition for DevOps:
DevOps is the union of, at least, software development and IT operations activities in an
environment that has incorporated the accompanying cultural and technical principles to
deliver business value at a high frequency.

If we look at the available literature, we see that the DevOps practice is summarized in three
core principles which we see as supplementary principles to the Agile principles [1]:

1. Flow: the Delivery pipeline facilitating automated build, testing, integration and
deployment, to enable fast flow from business to development to operations
combined with an emphasis of small changes over big releases.

ggeh)

0010)

DevOps in Control — January 2026
Page 12 van 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

2. Feedback: functional monitoring to identify issues and communicate feedback fast to
everyone involved. For example, Blue/Green deployment', A/B testing® and Canary
releases?.

3. Learning: the continual learning process from incidents (e.g. blameless post-
mortems*) and failures (e.g. chaos monkey®) and of as much actual users of the
system by connecting technical experts with these actual users.

Different categories of DevOps

Because DevOps is not a formally defined and documented methodology - unlike frameworks
such as PRINCE2 -, there are many types of DevOps implementations, and almost every
DevOps team represents a unique approach. Due to the diversity of DevOps implementations,
understanding DevOps typologies offers useful context for identifying and assessing
associated risks. The DevOps Topologies organization presented 8 DevOps anti-types and 9
DevOps collaboration types (ranging from an effectiveness level of low to high) to create
awareness regarding the several different, most common ‘flavors’ of DevOps implementation
[24]. For proper application of the control framework presented in paragraph 4.3, it is crucial
to be aware of the model used by the team that is to be assessed.

DevOps practices

In Agile teams, automation (and subsequent improvement) of the software development
process could already be enhanced by using VCS and laC. With the application of DevOps
practices, the automation evolved further into the concepts known as CI/CD which are shortly
introduced below:

e Continuous Integration (Cl): Martin Fowler introduces the following definition for Cl:
“a development practice that requires developers to integrate code into a shared
repository several times a day. Each check-in is then verified by an automated build,
allowing teams to detect problems early” [26]. Cl is an enhancement built upon the
use of VCS. Cl is often one of the drivers of Agile practices.

e Continuous Delivery (CD): As an extension of Cl and the next step in incremental
software delivery, CD ensures that every version of the code in the Cl repository that

1 A deployment technique that requires two identical production environments (blue and green) which can be used
to deploy a new release to e.g. blue to gain feedback on the working of the release and after successful feedback
switch the router to so send all incoming requests to blue (instead of green). There are several nuances and different
approaches available regarding the use of this technique.

2 A/B testing is a way to compare two versions of a single variable, typically by testing a subject's response to variant
A against variant B and determining which of the two variants is more effective.

3 Canary release is a technique to reduce the risk of introducing a new software version in production by slowly
rolling out the change to a small subset of users before rolling it out to the entire infrastructure and making it
available to everybody [45].

4 A postmortem is a written record of an incident, its impact, the actions taken to mitigate or resolve it, the root
cause(s), and the follow-up actions to prevent the incident from recurring. It is done with the focus on identifying the
contributing causes of the incident without indicting any individual or team for bad or inappropriate behavior (source:

Google).

5 A program that randomly chooses a server and disables it during its usual hours of activity.

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 13 van 49

has been tested can be released at any moment. This is often referred to the concept
of “maintaining code in a deployable state”. It is achieved through a set of practices
and methodologies designed to improve the process of software delivery and ensure
reliable software releases. Leveraging automation, from Cl builds, to (security) testing,
to deployment, CD involves all dimensions of the development and operations
organization. Ultimately, it enables the systematic, repeatable, and more frequent
release of quality software to end customers [27].

e Continuous Deployment: As an extension to Continuous Delivery (CD), Continuous
Deployment focusses on executing the deployment to production automatically after
every change. It is the set of practices to enable frequently deploying small code
changes to production by removing all manual steps in the Delivery pipeline. If a
deployment causes a problem, it is quickly and reliably rolled back using an automated
process. Through this robust automation, rollbacks are a reliable way to ensure
stability for customers and at the same time are convenient for the developers because
they can roll forward with a fix as soon as they have one.

Devops

Continuous Deployment
Continuous Delivery
Continuous Integration

Plan Code Build Test Release Deploy Operate f

[Agie
\ Maturity |

7

Figure 4: Comparison of Cl /CD, Continuous Deployment
Tooling overview (Appendix D)

In the previous two paragraphs several technological principles have been explained. There
is an actively growing number of tools becoming available to achieve this level of automation.
Xebia labs has created a ‘Periodic table of DevOps tools’ [42] to provide an overview of the
most used tools for each of the phases in the delivery pipeline (see Appendix D). This overview
is important as it gives the auditor insights in the level of automation applied in the Integration
and Delivery pipeline which impacts the audit approach to be applied.

Documentation

The logical result of the high-level of automation in both Agile and DevOps teams generates
off course a lot of source code versions. This source code has become the new (audit)
documentation. With all steps and activities registered in the VCS and logging of all code
changes, including what changed and by whom and when, there is no or less need to create
several of the traditional formal documentation. However, environment setup instructions and

|

1
1
0010)

DevOps in Control — January 2026
Page 14 van 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

diagrammatic representations of the architecture are useful for bringing other engineering
team members up to speed on the system and sharing knowledge. The goal of the
documentation has changed from being imperative to understand the environment to being
informative for sharing purposes.

The Shared Services organization

Tooling and technology are important within DevOps to make the high level of automation
possible. It is therefore often seen that teams have a lot of freedom in the selection, use and
configuration of tools to gain experience on the best solutions. Research shows that when
the DevOps teams and their practices start maturing, naturally the focus then shifts to
normalization and standardization of the tools and services used within the organization [3].
This standardization is also fueled by the high degree of collaboration within the different
(DevOps) teams within the organization. This increases the development of proven best
practices. As a result, it is observed that gradually Shared Services teams are formed. These
teams now take over the management of several of the tools and best practices used within
the DevOps teams (for example the tools needed for the Integration and Delivery pipeline).
Also, often DevOps teams make use of (public) cloud resources, the management of which
now shifts towards the Shared Services team. This is confirmed in the State of DevOps report
2018 in which is stated that DevOps teams report an enhancement in their delivery quality
and a further gain of efficiency by acquiring tools and services form Shared Services teams
[3]. As such a software delivery ‘ecosystem’ is created where more teams are part of the
management of an application’s changes. The result is a longer ‘software chain of custody’.
In the next chapter the impact on the audit is further elaborated.

Test strategy

In order to understand whether new software will work in production, developers need to run
tests on their software in production-like environments which are nearly identical to the
production environment, as any deviation in the test environment compared to the production
environment increases the chance of running into problems later in the pipeline. Following
the principle of Agile to reduce the number of handoffs, it would be best if developers could
create these production-like environments in a self-service manner. This is possible by using
laC practices.

Automating testing allows speeding up the test process significantly compared to manual
testing and is less time-consuming and less dependent on the quality of individual testers. By
automating tests, developers can run (some of) the tests directly after having finished a code
change. Not only can tests therefore be performed earlier in the development process, it also
reduces the number of handoffs between testers and developers and acts as a tollgate during
propagation of releases from development to test to production(like) environments.

Some examples of tests to be executed, presented in the order of easiest to more difficult to
automate are:

e Unit Tests: testing a single method, class or function in isolation

e Acceptance Tests: testing the application as a whole

e Integration Tests: testing the correct interaction with other applications and services
In addition, automated testing is also well-suited for testing several non-functional

requirements, for example performance and security. Automating testing in most cases does
however not mean that manual testing is completely removed from the testing process, but

DE BEROEPSORGANISATIE VAN IT-AUDITORS DeVOpS in Control — January 2026
Page 15 van 49

rather that it plays a smaller role in the overall testing process. Exploratory Testing and User
Acceptance Testing often remain manual. For more details on a balanced test approach and
division between automated and manual tests we refer the reader to the ‘Practical Test
Pyramid’ article by Martin Fowler [11] and also figure 5 which is further build upon the
‘Practical Test Pyramid’.

Manual
Tasting
° Functional Tests (GIU) .
7 Delevelopers & [QA team
L L
® Delevelopers & / QA team e
L

Delevelopers

sl

Costs [/ Effort

Delevelopers

Delevelopers
Figure 5 The ideal test pyramid [43]

From DevOps to DevSecOps: a natural evolution

An addition to our initial study report is this chapter on DevSecOps. This is not without reason,
because Cyber Security is high on the global agenda. A report from World Economic Forum
(WEF) and S&P Global reveals that cybersecurity-related risk consistently ranks among the top
global concerns. For example, the WEF’s ‘Global Risks Report 2024’ ranks ‘cyber insecurity’
as the fourth most severe risk in the short term. S&P Global states in their ‘Top Geopolitical
Risks of 2025’ that “cyber-attacks are a growing geopolitical risk, becoming larger, more
intricate, and more relentless.” International organizations such as the United Nations (UN)
also emphasize the growing importance of cybersecurity in their thematic reports and global
policy recommendations.

Given the growing importance of cybersecurity, it’s only logical that DevSecOps has emerged
as the next key step in the evolution of DevOps and, by extension, in our work as IT auditors
and risk professionals. Security has always been part of DevOps; the difference now is that
it’s taking on a far more prominent role. DevSecOps, short for development, security, and
operations, represents an approach where security is not treated as a separate activity or a
final step, but is instead woven into every phase of the DevOps software development
lifecycle.

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 16 van 49

Before we can fully appreciate the value DevSecOps brings, it helps to take a step back and
consider what DevOps has already achieved. By breaking down barriers between development
and operations, DevOps transformed how software is built and delivered with a strong focus
on speed, collaboration, and reliability. But despite these improvements, security sometimes
remained a separate track, addressed late in the process or even after deployment. Most
auditors will be able to recall at least one situation, and likely several, where security was
clearly treated as an afterthought. Perhaps it was a critical (software) vulnerability discovered
only after go-live, hardcoded admin credentials identified during an audit, or a secrets file
that had unintentionally been committed to a public repository. These kinds of findings are
all too familiar in our field. They highlight the risks of sidelining security during development
and reinforce the importance of a more integrated, security-by-design approach such as
DevSecOps.

DevSecOps builds upon the security foundation that should already be embedded within
DevOps, reinforcing security as a shared responsibility throughout the entire development
lifecycle and establishing it as a fundamental pillar. It does not replace DevOps but rather
extends it. While DevOps emphasizes collaboration between development and operations and
frequent delivery, DevSecOps introduces an additional dimension: security integration and
secure delivery. The earlier characterization may seem overly simplistic, as security has always
been part of DevOps. However, with DevSecOps, there is a much greater, more integrated,
and above all shared responsibility for security, which is now recognized as not merely a
technical matter but a cultural and organizational imperative.

This difference becomes particularly evident when examining how testing is approached. In a
typical DevOps setup, automated testing primarily targets functionality, quality, and
performance, including unit tests, integration tests, and system-level checks. These remain
essential. DevSecOps, which is already integrated in some DevOps environments, introduces
an additional dimension by embedding security-focused tests directly into the pipeline.
Examples include security testing, vulnerability scanning, and checks for exposed secrets,
hardcoded credentials, and known misconfigurations.

These practices help teams catch and address security risks early in the process, making
security part of the build and delivery itself, not an afterthought or a compliance checkbox.
This mindset also encourages a culture where security is everyone’s responsibility, embedded
in the way DevSecOps teams work together. As described in chapter 2.2, Agile development
is not just about tools and processes, it’s about adopting a mindset of continuous
improvement and collaboration. DevSecOps builds on that foundation by making security a
shared responsibility throughout the entire development lifecycle.

For us as IT auditors and IT risk professionals, the evolution from DevOps to DevSecOps is,
at its core, not a major technical transformation. Rather, it represents a shift in focus. Security
is, and always has been, part of the (DevOps) software development process. What changes
now is that it becomes more deeply integrated across all stages, proactive, and a shared
responsibility.

DE BEROEPSORGANISATIE VAN IT-AUDITORS DeVODS in Control — January 2026
Page 17 van 49

To summarize:

1. Security is integrated, not isolated: DevSecOps embeds automated security checks
directly into CI/CD pipelines.

2. Security becomes proactive: Vulnerabilities are identified and addressed early,
reducing both risk and remediation costs.

3. It drives cultural change: Teams adopt a mindset where developers, testers, and
operations all take ownership of security, not just the security team.

DevSecOps is therefore not just a technical enhancement. It represents a natural evolution in
how security is approached, implemented, and how it can be audited.

To make this rather extensive introduction to DevSecOps more concrete within the context of
NOREA's DevOps Control Framework, when reviewing the controls in the DevOps Control
Framework, security appears in several testing-related controls. However, it is most explicitly
and concretely addressed in Control 11, which focuses specifically on security testing. This
includes key components such as threat modeling, vulnerability scanning, static code
analysis, dependency checks, and penetration testing, each an essential part of the "Sec" in
DevSecOps.

It's important to note that not all teams are at the same stage in their security journey. Some
may not yet need to be, depending on their context. The framework’s maturity levels reflect
this variation well. Level 1 begins with basic security testing and follow-up, while Level 5
involves continuous learning, evaluation, and iterative improvement of security testing
practices.

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 18 van 49

3. DevOps in control

Based on our research and as introduced in the preceding paragraphs we advise a 3-step
approach for auditing DevOps environments:

1. Determining the software development methodology or principles being used
2. Cultural maturity assessment
3. Control assessment

There are many software development methodologies, best practices and approaches. For
most, if not all, traditional software development methodologies there are several control or
compliance frameworks available. IT auditors are mostly familiar with the Waterfall software
development methodology and therefore, most of the control frameworks used by IT auditors
are Waterfall based. However, IT auditors currently face a misalignment between their control
frameworks and the development practices used by the organizations. An increasing amount
of organizations are using modern approaches such as Agile or DevOps or a mix between
Waterfall and (parts of) Agile. We present in this chapter a combined audit approach for both
Agile and DevOps.

3.1 Determining the methodology being used

There is a lot of confusion about the application of Agile and DevOps, because they are often
claimed to be applied when adherence to their principles is only partly fulfilled. This is often
the case when an organization is using a phased approach in the shift towards an Agile and
DevOps way of working. When performing an audit under these circumstances, it is crucial to
apply an appropriate control framework. We therefore advise the IT auditor to first determine
which is currently the dominant approach being used and then apply the proper controls
based on that methodology or practice.

One of the core distinctions between the different practices is the delivery frequency (the
speed in which changes are deployed in production). Because this metric provides the most
accurate indication of the dominant software development approach, we apply this metric to
determine the software development method being used. The table below provides an
indication of the delivery frequencies that are typically associated with each approach.

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 19 van 49

Delivery frequency Methodology/practice Description

Quarterly or less Waterfall The software development is done in phased
steps leading to large planned software
releases.

Monthly Agile (principles and The software development process follows an

procedures) Agile approach, but deployments are still

performed manually.

(bi-)weekly Agile+ A CI/CD pipeline is implemented and used to
deploy software to the production
environment, but manual steps are still
required.

Daily or more DevOps / Every change that is accepted is automatically
build, tested and delivered by the automated
delivery pipeline and possibly also deployed to
the production environment.

Continuous Deployment

Table 1: Guidance to determine software development method

For more details on distinctions or best practices associated with the different approaches,
see the State of DevOps report 2018 [3] and DevOps Topologies [24].

3.2 Culture maturity assessment

COBIT cautions that “Culture, ethics and behavior of individuals and of the enterprise are often
underestimated as factors in the success of governance and management activities”. In the
COBIT 2019 model we can see that culture, ethics and behavior is also one of seven
components required for an effective governance system. Currently, COBIT is still the most
used framework for IT auditors who use the complete, or tailored components of the model
to assess the (IT) governance system of organizations. COBIT already confirms that to gain a
complete insight in the working of the governance model at an organization, the IT auditor
should include the assessment of the organizational culture into audit approach.

The delivery frequency is the key indicator to determine the dominant methodology being
used, because it is simply not possible to achieve the higher delivery frequencies without
having implemented most of the DevOps technical principles. However, from our definition
of DevOps in paragraph 2.3, it can be concluded that cultural principles play a key role in
maintaining a sustainable DevOps team next to the technical principles [34].

It appears that there is no common understanding about what culture is. In this guide, we
choose the definition by Westrum. Westrum defines culture as that set of processes that
shapes organizational response to the challenges and opportunities that organizations face
[34]. Westrum explains that with ‘response’ he refers to the coherent patterns along which
individuals and the team respond and these patterns refers not only to the action but also to
the thoughts and emotions of the individuals [34]. Based on this definition, the culture of an
organization can be seen as analogous to the personality of an individual.

What makes a good (DevOps) culture?

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 20 van 49

Google started project Aristotle with the goal to identify the aspects that make a team effective
at Google. The project identified five factors that really mattered. In order of importance these
are [35]:

1. Psychological safety

2. Dependability

3. Structure & Clarity

4. Meaning

5. Impact

The results of the project including guidance for improving each of above factors are
published by Google [35].

Another model on culture can be derived from research performed by Westrum [34], which is
also the model used in the State of DevOps studies. Westrum’ s model consists not on a set
of factors or capabilities but contains a list of 6 questions. These questions may be slightly
altered to fit a particular organizational context, but only minor changes should be applied
[36]. Copyright restrictions prevent us from listing these questions in this study report; we
refer the reader to Westrum’ s paper [36].

A third example is derived from ISACA who has also published a list of the most important
factors to make DevOps teams successful [37]. These are:

e Trust

e Transparency

e Accountability

¢ Communication

e Mutual recognition

e Ability to learn from peers

e Ability to teach team members

e Cultural awareness
How to perform a culture assessment
Both Google’s project Aristotle and Westrum’ s research conclude that an organizational
culture is a perceptual measure, which is hard to describe and therefore best captured using
survey methods. Example of survey statements of Google based on the five factors are:

e Psychological safety - “If | make a mistake on our team, it is not held against me.”

e Dependability - “When my teammates say they’ll do something, they follow through
with it.”

NOREA'

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 21 van 49

e Structure and Clarity - “Our team has an effective decision-making process.”
e Meaning - “The work | do for our team is meaningful to me.”
e Impact - “l understand how our team’s work contributes to the organization's goals.”

The development of a culture assessment model is not part of this study report, but we refer
the reader to appropriate assessment tools that are already available for DevOps. Examples
of tools available:

e The DORA assessment tool [12], specifically the Capabilities part that focuses on the
cultural readiness. This model is partly based on the Westrum model.

e The Microsoft DevOps assessment tool [13], specifically the Culture section.

It is recommended assessing the cultural maturity of the team (as required for a successful
implementation of DevOps) during the audit, in order to be able to formulate, together with
the assessment of the technical controls, a more justifiable audit conclusion.

3.3 Control assessment

The heart of DevOps is the Delivery pipeline that integrates the Build, Test and Delivery phases
of the software development process. It consists of a dedicated implementation stream per
application, based on tooling for version control, build automation, provisioning,
configuration management and deployment. In figure 5 an example of the Delivery pipeline
of a DevOps team is visualized [44]. The numbered controls of the control framework
presented in paragraph 3.4 have been inserted in this figure to provide better insight on the
‘location’ of these controls within the Delivery pipeline.

o e o Manual Test e Reviaw
,/ 8 . ™
2 8
Frepare Production
9 A L14)
&h =Y
\ 2
N L LS Approve @ Acceptance
= 5
W o : Test
Test ™~ Commit
e / 3 . o o 1] ®
A g) y
5 h 4
.- I "
>
S/ o
o Build
e Develop <) O
Central
Version
Control
System
i
DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026

Page 22 van 49

Figure 6: Example of a Delivery pipeline at Schuberg Philis [44]
IT General Controls (ITGC)

There are five domains of ITGC controls identified as the essential areas of the IT “space” that
should be examined, even if only briefly, by the auditor as areas of IT that potentially
introduce risk to the financial statements i.e., the risk of material misstatement (RMM) [22].
There is no common ITGC framework available, however auditing literature such as the
Statements on Auditing Standards (SAS) No. 104-111 has summarized the need for these five
domains to be considered [29]. ISACA publishes leading best practices and frameworks for
information services and has developed a guideline which includes the minimum five ITGC
domains and controls [22]. This overview of ISACA is presented in table 2, which includes
their mapping to the COBIT 4.1 framework. In the table a new column has been added to
include the references to newest COBIT release (COBIT 2019).

For applications within the scope of the IT audit that are managed by DevOps teams, the
controls primarily affected are those within the Change Management domain, although other
domains (e.g., Information Security) may also be impacted. While the control objectives
themselves remain unchanged, the implementation of controls—and consequently the testing
approach—differs in a DevOps context. This has been confirmed by ISACA in the COBIT 2019
Framework (see paragraph 1.2).

This study report presents a control framework for auditing DevOps environments - specific
Change Management - in paragraph 3.4. It is recommended that auditors assess the controls
outlined in this framework instead of the traditional controls within the Change Management
domain. The remaining controls presented in Table 2 remain applicable and should be
assessed in accordance with standard audit procedures.

In paragraph 2.3 we introduced the Shared Services teams which are often found in more
mature DevOps organizations [3]. When assessing an IT environment in which the use of
Shared Services teams is made, it is expected that the ITGC controls will need to be assessed
for these Shared Services teams as well, because the management of these tools has a direct
impact on (the integrity of) the application environment maintained by the Agile and DevOps
teams. Furthermore, if the Shared Services teams also operate based on Agile and DevOps
principles, we also suggest the auditor to assess the Change management domain based on
the Agile and DevOps controls presented in in paragraph 3.4.

Domain Controls COBIT 4.1 reference COBIT 2019 reference
IT entity-level IT governance PO domain (PO01-10) APO domain (APOO1-
controls IT operations management DS1 Define and APOO14)

manage service levels DSSO1 Managed

DS3 Manage operations

NOREA'

DE BEROEPSORGANISATIE VAN IT-AUDITORS

performance and
capacity

DS6 Identify and
allocate costs

DS7 Educate and train
users

DS8 Manage service
desk and incidents

DevOps in Control — January 2026
Page 23 van 49

DSS02 Managed service
requests and incidents

DSS03 Managed
problems

MEA domain (MEAOT-
MEAO04)

Domain Controls COBIT 4.1 reference COBIT 2019 reference

DS9 Manage the
configuration

DS10 Manage
problems

DS11 Manage data

DS12 Manage the
physical environment

DS13 Manage
operations

ME domain (ME1-4)

Change Changes to Al domain (Al1-7) BAl domain (BAIOT-
management software/programs BAITT)

Changes to infrastructure

Information Physical and environmental DS5 Ensure systems DSS05 Managed security
security controls security services

Logical access controls

Backup and Backup of data DS4 Ensure DSS Managed continuity
recovery . L . continuous service

Business continuity planning

(BCP)

Disaster recovery planning

(DRP)
Third-party IT Outsourced IT DS2 Manage third- APO10 Managed vendors
providers party services

Vendor management
ISAE 3402 audits

Table 2: ITGC areas according to ISACA [22]

The concept of Shared Services teams in relation to Agile and DevOps teams is referred to by
Gartner as shifting ‘Up the stack’ [30] since the Agile and DevOps teams managing the
business applications are more and more only operating on the upper half domain of the IT
stack. The lower half is ‘outsourced’ to Shared Services teams [3] [30]. As stated in the State
of DevOps report, this results in normalization and standardization of the stack and use of
best practices, which is imperative for the further maturation of DevOps within the
organization [3].

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 24 van 49

Processes

Transactions

Application

Tools & Services

Infrastructure

Figure 7: IT stack divided between DevOps and Shared Services teams [30]
Testing approach (system-driven versus sample-based)

From audit guidelines such as those from the American Institute of Public Accountants
(AICPA), we can determine that there are five types of test procedures that can be applied
during the IT audit. These test procedures need to be applied to be able to form an opinion
on the suitability of the design and the operating effectiveness of controls during the period
under review. The AICPA guidelines also state that the controls need to be tested by applying
a variety of testing procedures. These five test procedures are (in order of complexity from
lowest to highest):

1. Inquiry: based on interviews with appropriate management and staff about the
controls.

2. Observation: observation of the presence of the control (e.g. a physical control such
as a security camera).

3. Inspection of evidence: collection and review of documentation based on a sample
size. If, during testing, the auditor encounters an error the sample, they can expand
the sample size and conduct further testing or perform additional tests.

4. Reperformance: the auditor manually reperforms/executes the control to validate the
output of e.g. an automated system generated calculation or in case of an
automated control the inspection of just one event would be completed.

5. Computer Assisted Audit Technique (CAAT): method to analyze large volumes of
data or all transactions or events executed instead of a sample size often performed
with the use of software.

The use of Inquiry should be combined with other test procedures, specifically Observation,
Inspection or Reperformance. The ideal test approach is testing the controls as automated
controls based on the Reperformance test procedure, because then it is sufficient to test one
event only instead of a sample consisting of multiple events. This approach is more effective

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 25 van 49

because it provides assurance that all events are properly executed according to the control
objective and also more efficient because it requires less effort to test.

In the preceding paragraphs several concepts have been introduced. The most important
concepts from an audit point of view are:

e Application of a VCS (Version Control System)

e Application of laC (Infrastructure as Code)

e Application of ClI (Continuous Integration) principles
e Application of CD (Continuous Delivery) principles

e Application of Continuous Deployment principles

e Management of (Delivery pipeline) tools based on standardized best practices by
Shared Services teams (shifting ‘Up the stack’)

Depending on team maturity, a subset of these concepts or all of them may be applied by
Agile and DevOps teams. The more concepts are applied, the higher level of automation will
be achieved by the team. The implementation of these concepts is not possible without
appropriate tooling (e.g., Continuous Delivery requires a CD tool) [23]. High level of
automation in the Delivery pipeline and automation of the controls makes it possible for the
auditor to justify the application of a system-driven audit approach, which is the most efficient
and effective approach because the testing of one event only is required (Reperformance).
Some examples of controls where testing one event (Reperformance) can be performed are:

e reviewing the peer-review process (pull and merge request performed by two
different team members) system parameters of the tested system by tracing through
one transaction.

e reviewing the query or code of the underlying peer-review check.

There are several pre-requisites that must be fulfilled for applying a system-driven audit
approach. These are:

e Effectiveness of the ITGC controls of the environment in which the automated
controls run (e.g., access and change management controls).

e Completeness and accuracy of all changes that directly or indirectly impact the
configuration settings of the automated controls and their proper assessment and
approval.

Challenges with the application of a system-driven test approach in Agile and DevOps
environments

In paragraph 3.2, it has already been stated that Agile and DevOps are not fixed
methodologies, but a way of working based on a set of common principles aimed at
continuously improving the value, quality and speed of the delivery pipeline. Also, one of the
fundamental principles is the ambition to keep improving (principles 9 and 12). This implies
that a team will start as it sees fit (and considers achievable) and over time will gradually
progress and increase the level of automation/use of practices. However, in order to apply a
system-driven audit approach the level of automation should be relatively consistent

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 26 van 49

throughout the year and should include all the key controls. Unfortunately, this maturity stage
has not yet been achieved by most Agile and DevOps teams. The State of DevOps survey
results show that only 11% of respondents report a highly mature DevOps practice [3].

Another challenge to be addressed is that in most Agile and DevOps teams, team members
have access to the configuration settings of the Delivery pipeline tools being used.
Assessment of these access rights is part of the ITGC control assessment performed by the
auditor, because establishing appropriate access rights is a pre-requisite for reliance on
automated controls. If team members can change Delivery pipeline tool configuration settings
at will, it is most likely that ITGC controls regarding access rights and proper segregation of
duties will not be complied with, and that the prerequisites for reliance on a system-driven
audit approach will not be met. Establishing Shared Services teams will help in achieving this
prerequisite, because the management of configuration settings is then shifted from
development team members towards the Shared Services teams.

It is also observed that, possibly due to the principles for constant improvement (principles 9
and 12), team members prefer access to the configuration settings of the Delivery pipeline
tools, in order to experiment with different settings to find the most effective and efficient
ones. Another important reason for team members to have access to certain features is that
in emergency change procedures it is technically required to be able to change settings in the
pipeline or override version control enforced protection. In the State of DevOps survey results
it is confirmed that teams often start/stop several practices along the way [3] and that a stable
practice is only observed in the most mature teams [3].

Introducing the FEAT-approach for control assessment

The control framework developed in this study report is applicable for Agile, DevOps and
various hybrid combinations that are in common use. However, it is imperative that the IT
auditor determines whether a specific control qualifies as an automated control or (partly)
depends on manual activities (see prerequisites in preceding paragraph). By knowing the
stage of application of the key principles and tools within the development team, the auditor
can tailor the control framework towards his use. In the last column of the control framework
we have indicated which controls have the potential to be tested based on a system-driven
test approach (qualified automated controls). As can be seen, most of the controls have that
potential but as explained in the paragraph above, it is unlikely for most teams to achieve a
sufficient level of maturity to make this possible.

An alternative to sample-based testing is the Full population & Exception Analysis Testing
(FEAT) method [46]. As the name indicates, this method is based on full population testing
instead of sample-based testing. This method is suggested for use until the prerequisites for
automated controls to enable a system-driven audit approach are met.

The FEAT method consists of the following steps:

1. Define a risk-based overview of the key controls present within the delivery pipeline.

2. Create reliable population overviews of all events related to the key controls based
on complete and accurate population lists.

3. Define success/fail control logic for the control (e.g. merge requests are performed
by a different team member).

4. Automate testing of the control logic and execute the test on the full population.

N O REA DevOps in Control — January 2026

DE BEROEPSORGANISATIE VAN IT-AUDITORS
Page 27 van 49

5. If exceptions are reported, perform an analysis of all exceptions.

6. Provide an overall conclusion based on performed analysis (e.g.
effective/ineffective).

This approach provides a high level of transparency on the key controls within the Delivery
pipeline. Creating transparency is seen as the main driver to achieve trust which is often still
perceived as low regarding Agile and DevOps. The importance of trust is also confirmed and
further elaborated upon in the ‘Building digital trust’ report by PwC [32]. Within teams, trust
has been associated with improvements in communication, teamwork and superior levels of
team performance [33]. Also, Patrick Lencioni states that one of the core contributors to a
team's inability to achieve goals is due to lack of trust. He introduced the 5 Dysfunctions of a
Team model of which the most important dysfunction is called ‘Absence of Trust’ [31].

The application of the FEAT model can significantly help in reducing the lack of trust by:

e Providing 100% insight in the effectiveness of key controls (through full population
testing)

e Providing insight in the remaining risks (through the exception analysis)

If control failures are identified, it is expected that teams will improve their control
performance levels (in line with the continuous improvement Agile principle 9 and 12) and by
doing so, increase the level of confidence put in their software delivery processes. The
maturity levels provided can guide the organization in defining the improvements needed.

Define controls Build logic Automate testing

Analyze exceptions
. . . ®
v Determine key controls P ——— P S - ¥ Analyze deviations
fobe success/fail logic testing on full (foot)
¥ Determine live data P " log ulaﬁong'n real ime ¥ Determine control
source per control mp t pop effectiveness
Figure 8: Summary of the FEAT method
DE BEROEPSORGANISATIE VAN IT-AUDITORS Devops in Contro' - January 2026

Page 28 van 49

3.4 The DevOps control framework

Version control

Version Changes Date ‘
V1.0 Initial version 1-9-2019
V2.0 Improved Control description (column C) Control 1-1-2026

Assessment (column D) for all controls
Merging related controls
Addition of maturity levels for all controls

License NOREA DevOps Framework
The NOREA DevOps in Control Framework is licensed under a creative Commons BY 4.0. For more information:
https://creativecommons.org/licenses/by/4.0/

You are free to:
e Share — copy and redistribute the material in any medium or format
e Adapt — remix, transform, and build upon the material for any purpose, even commercially

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
e Attribution - You must give appropriate credit , provide a link to the license, and indicate if changes were made .

e You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Feedback & questions
Feedback and questions can be sent to:

- Sandeep Gangaram Panday (chair) - sandeep@brightlyn.nl
- Edwin Galama - E.Galama@cjib.nl

- Pieter Jolen - p.jolen@vanlanschotkempen.com

- Zubair Yaseen - Zubair.Yaseen@abnamroclearing.com

0001
1001
1001
0010

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026
Page 29 van 49

Jean-Jacques Bistervels - jean-jacques.bistervels@bovemij.nl
- Than Son Nguijen - ttsonnguijen@gmail.com

Paul van Kemenade - Paul.van.Kemenade@rabobank.nl
Boris Cuijpers - Boris.Cuijpers@rabobank.nl

Link to Excel version
https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development

How to use the framework

In line with best practices for internal control, it is recommended to conduct a risk analysis prior to selecting controls. This analysis clarifies which risks are
relevant within the context of Agile/DevOps and forms the basis for defining concrete control objectives. Based on these objectives, appropriate control
measures and test criteria from our framework can then be selected.

In addition, it is important to explicitly address organizational preconditions and policy aspects. Examples include:
e Ensuring well-functioning Scrum teams by focusing on desired behavior, knowledge, and competencies.
e Establishing policies and descriptions regarding access and authorization for the tooling used.
e Documenting working methods for Scrum/DevOps teams, including rules and agreements about the CD pipeline.
e Defining procedures and controls (segregation of duties) for OTAP environments within the CD pipeline.
e Including the CD pipeline and tooling in the CMDB for version, license, and configuration management.
e Creating test policies with quality requirements for different test types (integration, user acceptance, etc.), including logging, review, and approval.
e Specifying requirements, tooling, and test environments for integration and user acceptance tests, and recording results and approvals in VCS or
alternatives.
e Making arrangements for vulnerability scans, security scans, and penetration tests on tooling, including prioritization, logging, and follow-up.
e Performing monitoring scans (e.g., via SIEM) on logging from the CD pipeline, focused on specific risks and compliance requirements.

These organizational measures are essential for effective control and serve as preconditions for the successful application of the control framework.

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 30 van 49

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development

Maturity model

The NOREA DevOps framework introduces maturity levels for each control to help organizations assess their current position. Each level provides criteria and
practical examples to determine where an organization stands and the actions required to advance. These maturity levels are based on the DNB Maturity
Model as described in the DNB Good Practices for Information Security®.

a5
s8]
it
0010)

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 31 van 49

https://www.dnb.nl/media/vskni24i/good-practice-ib-2023.pdf

Control description

Prepare The team has selected and formally
documented an Agile methodology
(e.g., Scrum, Extreme Programming,
SAFe) to guide its planning,
requirements analysis, and delivery
processes including the relevant
guardrails for compliance, quality
and security.

Roles and responsibilities are
defined and assigned in accordance
with the chosen methodology, and
backlog items (covering both
functional and non-functional
requirements) are continuously
refined, prioritized, and managed
with input from all relevant
stakeholders.

Control assessment

1. The team has selected a
suitable Agile methodology
aligned with organizational
requirements and this
methodology, including any
required guardrails (e.g., for
compliance, quality, or
security), is formally
documented and accessible
to all team members.

2. Based on the selected
Agile methodology roles
and responsibilities such as
Product Owner, Scrum
Master, team members, and
relevant operational or
security roles are assigned
and documented. Verify
that, based on described
roles and responsibilities
“Definition of Ready” and
“Definition of Done” are
clearly established,
documented and applied for
all backlog items, reflecting
the needs and input of all
relevant parties.

3. Ensure that processes
exist and are followed for
capturing, refining,
prioritizing, and managing
both functional and non-
functional (e.g., security,
compliance, operational)
requirements in the
backlog, with input from all
relevant stakeholders
including operations and
security.

4. Confirm that there is
ongoing involvement of
business, development,
operations, and security
stakeholders in backlog
grooming and
sprint/release planning, and
that feedback from past
iterations and production
operations is used to
continuously improve
planning and delivery
processes.

Relevant COBIT

2019 controls
BAI02.01 Define and
maintain business
functional and
technical
requirements
BAI03.09 Manage
(changes to)
requirements
BAI03.12 Design
solutions based on
the defined
development
methodology

Maturity level 1

1. Informal (use) of Agile-
development
methodology. The
organization is familiar
with the Agile approach.

2. Product owners have
informal role, in most
case regular
management function
fulfils this role.
Documentation as DoR /
DoD used ad hoc, in
informal way.

3. Stakeholders
requirements are partly
considered in a informal
way

4. Backlog management,
user stories, DoD and
continuous prioritization
are not used yet, but
could be implemented.
Only a list of work to do
exists

Maturity level 2

1. An informal Agile
Methodology is available.

2. Informal role of
Product owner and team
roles exist. Dod is partly
used.

3. Stakeholders
requirements are
considered in a informal
way

4. Backlog, user stories,
DoD and continuous
prioritization by de
Product owner is
informally used

Maturity level 3

1. DevOps teams have
selected and implemented a
suitable Agile methodology
which is properly approved and
documented.

2. Product owners and teams
are assigned and responsible
for selected (business) services
and/or products. The Product
Owner is responsible for risk
management tasks. Requests
for functional or non-functional
requirements are initiated by
business stakeholders
(customers) are reviewed and
documented. The Definition of
Ready is defined.

3. Stakeholder requirements
and acceptance criteria, are
considered, captured,
prioritized and recorded before
implementation.

4. Use of backlog system/tool.

Backlog items are categorized,
prioritized and reviewed by
Product Owner. Definition of
Done is determined.

Maturity level 4

1. the use of the selected
Agile-Methodology is
measured

2. The Product owner and
team functioning is
measured and reported.

3. Stakeholders
requirements are evaluated
in a dedicated session and
systematic way (including
client/stakeholder).

4. Backlog, user stories, DoD
and continuous
prioritization by de Product
owner conform de Agile
Methodology is applicable
and evaluated in the
retrospective

Maturity level 5

1. The usage of the Agile
Methodology is systematically
evaluated and improvements
are documented and
monitored closely.

2. The product owner and
team functioning is improved
based on the periodical
evaluation (by HR and
management).

3. Improvements stemming
from the stakeholder
evaluation session are
systematically followed-up,
prioritized and included on
the backlog.

4. Quality of the backlog, user
stories, DoD and prioritization
by the Product owner is
evaluated continuously;
improvements identified are
followed up accordingly.

Prepare Develop and document designs (incl.

architectural diagrams) for the

1.Based on the service
portfolio and the activities

BAI03.01 Design high-
level solutions

1. Designs are not
available.

1. Designs are
incidentally available, but

1. Based on the service
portfolio and the activities on

1. Designs are formalized
and available and

1. Designs are formalized and
available and evaluated in the

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 32 van 49

Control description

Control assessment

Relevant COBIT

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

solutions in terms of technology,
business processes and workflows.

Ensure alignment with the IT
strategy and enterprise architecture.
Reassess and update the designs
when significant changes occur
during detailed design or building
phases, or as the solutions evolve.

Stakeholders actively participate in
the designs and version updates are
agreed/approved based on chosen
agile methodology.

on which team members are
working identify whether for
the solutions in scope
designs are available
(including architectural
diagrams). The level of
detail maintained should be
in line with the development
method selected and
appropriate for the solution.

2. Validate if all relevant
roles are providing input on
the designs while ensuring
proper stakeholders are
involved.

3. Ensure that the
supporting (IT) systems for
the solution development
are properly documented
(including the respective
flow/interaction between
the systems) throughout or
after completion of the
solution. Changes to e.g.
the build street need to be
documented including
keeping usable logs of
support systems/methods
that are not used anymore.

2019 controls

2. Unsure whether all
relevant roles are
providing input

3. Supporting IT systems
(e.g. CD-pipeline/Tools
etc.) is not documented
or partly concept-
documented.

not structurally and as
part of a formal
approach.

2. All relevant roles are
informally requested to
provide input for
designs.

3. Supporting IT systems
(e.g. CD-pipeline/Tools
etc.) are informally used
to support design
activities.

which team members are
working identify whether for
the solutions in scope designs
are available. The level of detail
maintained should be in line
with the development method
selected and appropriate for
the solution.

2. All relevant roles are
identified and provide input for
the designs while ensuring
proper stakeholders are
involved for appraisal and
approval.

3. Supporting (IT) systems for
the solution development are
properly documented (including
the respective flow/interaction
between the systems)
throughout or after completion
of the solution. Changes to e.g.
the build street are
documented, including keeping
usable logs of support
systems/methods that are not
used anymore.

compliance is measured in
the retrospectives

2. Input from involved roles
and stakeholders is tracked
and measured. Approval and
decline frequencies by
stakeholders are recorded.

3. The overview of
supporting IT systems (e.g.
CD-pipeline/Tools etc.) is
documented and its use
measured by the owners
(e.g. after each sprint).

retrospectives. Improvements

are sought and implemented.

2. The list of relevant roles is
evaluated periodically.
Improvements are sought and
implemented based on input
and approval/decline figures.

3. The overview of supporting
IT systems (e.g. CD-
pipeline/Tools etc.) is
documented and evaluated by
the owners periodically (e.g.
after each sprint).
Improvements are sought and
implemented.

Prepare

Procure solution components
(applicable to the CI/CD pipeline) in
accordance with requirements,
detailed designs, architecture
principles and the

enterprise’s overall procurement
policies and procedures (considering
security/privacy and compliance
requirements).

A periodic review of procured
solutions is conducted to ensure
that newly added features (such as
generative Al features) still meet the
enterprise's policies.

1. Identify company
procurement procedures
and requirements (including
security, privacy and
compliance) against which
the candidate solutions are
assessed.

2. Validate whether
stakeholders are involved in
the procurement process
and whether the procured
software complies with
company requirements.

3. Validate if an overview is
available of all external
tools/software used
(including open source) and
match this with the
acquisitions in an asset
inventory.

4. Extend the (software)
asset inventory with a SBoM
(Software Bill of Materials)
to ensure that per
tool/application a complete
list is available of the
components, libraries and

BAI03.04 Procure
solution components

1. Procurement
procedures and
requirements are not set
up formally or not known

2. Stakeholders are
involved on an ad hoc
basis

3. An overview of
external tools/software is
not available

1. Procurement
procedures and
requirements generally
known but not
documented.

2. Stakeholders are
identified and involved,
however not
documented.

3. An overview of
external tools/software is
available and matched
with the asset inventory
(e.g., CMDB) on ad hoc
basis.

1. Candidate solutions are
assessed against company
procurement procedures and
requirements (including
security, privacy and
compliance)

2. Stakeholders are involved in
the procurement process and
the procured software complies
with company requirements.

3. An overview is available of all
external tools/software used
and matched with the
acquisitions in an asset
inventory. A periodic review of
the tools in the asset inventory
is performed and follow-up of
actions is performed.

4. The asset inventory is
extended with a SBoM.

1. The adequacy of the
company procurement
procedures and
requirements (including
security, privacy and
compliance) and the
effectiveness of the
assessment is periodically
measured and reviewed.

2. The list of stakeholders is
verified for accuracy
periodically. Whether the
procured software complies
with company requirements
is validated periodically.

3. The coverage of external
tooling and its suitability are
measured. Reporting on
periodic review and
outstanding actions is
available.

4. Periodic measurements
are performed to assess
completeness of the SBoM.

1. The effectiveness of the
company procurement
procedures and requirements
(including security, privacy
and compliance) and the
assessment of candidate
solutions are continuously
evaluated and improved

2. The effectiveness of the
procurement process is
continuously evaluated and
improved

3. Improvements for the use
of external tooling are actively
identified through market
surveys or other means. Large
releases are automatically
identified and reported for
timely follow-up for review
against the enterprise's
policies.

4. Tooling is used to maintain
a complete and automated
SBoM

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 33 van 49

Control description

Control assessment

Relevant COBIT

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

2019 controls

frameworks used within the
tool/application. In case of
acquired software this can
be requested from the
supplier.

Develop A central version control solution is 1. Validate that a central BAI03.03 Develop 1. A formal version 1. A version control 1. A version control system has The effectiveness of the The measures under maturity
used for all software artifacts, Version Control System solution components control is not system has been been implemented with the measures under maturity level 2 are continuously
including application code, (VCS) is implemented for all implemented implemented with the formalized proper configuration level 2 are reviewed evaluated and improved.
infrastructure code and test scripts relevant software artifacts, proper configuration settings periodically 1. The configuration settings
to automate version management including application code, 2. Code changes are not settings 1. The configuration settings | of the version control system
and ensure traceability across infrastructure code, and test logged or logged ad hoc 2. Code changes are logged of the version control are continuously evaluated
repositories. scripts. Confirm that the 2. Code changes are and the log is retained in line system are periodically and improved.

VCS is properly configured 3. Specific access rules logged and the log data with formal policies reviewed. Metrics are used
to support secure, auditable are not formalized is maintained. to measure compliance with 2. Code changes are verified
version management. 3. Access rules have been a defined settings baseline. and possibilities for

4. The branch policy has 3. Access rules have defined and are properly improvement identified.
2. Validate that all code and not been defined been defined and implemented. 2. Metrics for code changes
script changes are logged properly implemented have been set and are 3. Access rules have been
within the VCS, capturing at 4. A Branch policy has been actively measured and defined, properly
least: who made the 4. A Branch policy has defined, is followed and reported. implemented and are
change, what code was been defined and is verified. reviewed periodically and
changed, when the change followed 3. Access rules have been reviewed for improvements
was made, reviewer defined, properly
comments (if applicable). implemented and are 4. A Branch policy has been
Ensure that change history reviewed periodically. defined, is followed and
and log data are retained Metrics are used to measure verified periodically for
for a period defined by compliance with the policy. improvements
organizational policy and
compliance requirements. 4. A Branch policy has been 5. Rules for the storing and

defined, is followed and processing of sensitive

3. Validate that access rules verified periodically. Metrics information are made. A scan
are defined and enforced are used to measure is performed periodically to
for the repositories, compliance with the policy. uncover sensitive information.
pipelines, and testing tools. Possible improvements for
Test that only authorized storing sensitive information
users can modify repository are actively identified and
settings or access sensitive reported.
functionalities.
4. Validate that a clear
branch policy is defined,
such as requiring feature
branches and enforcing
peer review (the 4-eyes
principle).
Confirm that this policy is
actively followed and
enforced by the
configuration of the VCS or
supporting tools.
5. Ensure that exceptions to
version control or access
rules (if any) are
documented, justified, and
subject to formal review and
acceptance by the relevant
authority (such as the
product owner).

Develop Develop solution components 1. Verify that a documented BAI03.03 Develop 1. At best, an informal 1. Basic coding principles 1. A coding standard is 1. A coding standard is 1. A coding standard is
incrementally within isolated, secure coding standard addressing solution components coding standard with with clear guidelines are available and implemented and available and implemented. available and implemented.

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 34 van 49

Control description

Control assessment

Relevant COBIT

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

development environments that
comply with company standards and
security policies.

Develop solution components
progressively in a separate, secure
environment, in accordance with
company standards.

language, style, and secure
development practices
exists and is accessible to
the team. Confirm that code
is automatically checked for
adherence using tools such
as linters or static code
analyzers, and that
identified violations are
remediated.

2. Ensure that secure coding
policies and guidelines are
implemented and actively
enforced via integrated
development tools (e.g.,
linters, static analysis tools).
Confirm that any policy
violations are tracked and
resolved before code
advancement.

3. Validate that the
selection and use of
external software
components, including
libraries and frameworks,
follows established
guidelines covering security,
support, and licensing.
Check that decisions
regarding component
selection are documented
for traceability.

4. Ensure that processes are
in place to prevent the
inclusion of unencrypted
sensitive information (such
as passwords, access keys,
and secrets) in source code
repositories. Where
possible, automated scans
are performed to detect any
secrets or sensitive data in
the codebase and such
findings are promptly
remediated.

2019 controls

guidelines is in place but
ad-hoc used. Coding is
done according to
insights and experience
of development staff.

2. Limited use of (secure)
coding policies and
coding tools/framework.

3. Limited guidelines in
place for selection of
external software
components and this is
ad hoc and driven by
individual opinion and/or
need.

4. No formal agreements
for the storing and
processing of sensitive
information have been
made

partly implemented
based on a coding
standard. Guidelines are
not included in a policy
document.

2. Use of (a selected
number of) secure
coding policies, but
partly implemented in
tools/frameworks
dependent on the
maturity of the
development team.

3. Selection of external
software components
(including software
libraries) is performed
based on partly
implemented policies
and based on a per case
evaluation.

4. Rules for the storing
and processing of
sensitive information are
made.

included in a policy document
that is communicated through
the relevant parts in the
organisation. The standard is
reviewed periodically.

2. Implementation of a selected
number of reliable and secure
coding policies and
enforcement of these policies in
the pipeline by use of coding
tools/frameworks integrated in
the programming editor.

3. External software
components (including software
libraries) are selected based on
agreed upon guidelines that
have been implemented
throughout the organisation.
These guidelines are aimed at
compliance on security /
maturity requirements.

4. Rule for the storing and
processing of sensitive
information are made. A scan is
performed to uncover sensitive
information

The coding standard
contains guidelines for the
use of (a) programming
language(s), programming
style, practices and
methods. The standard is
known by the relevant parts
in the organisation and its
application is measured
against, for example,
industry standards.

2.Selected (secure) coding
policies are implemented
and enforcement of these
policies by use of coding
tools/frameworks is
integrated in the
programming editor (e.g.
eslint, pylint, pep8, etc.).
Metrics for coding quality
have been defined.

3. External software
components (including
software libraries) are
selected based on agreed
upon guidelines throughout
the organisation. These
guidelines are aimed to
ensure compliance with
security / maturity
requirements. The
application guidelines and
the selection of external
tools is measured and
minimum metrics defined.

4. Rules for the storing and
processing of sensitive
information are made. A
scan is performed
periodically to uncover
sensitive information. The
adherence to the agreement
is measured.

The coding standard contains

guidelines for the use of (a)
programming language(s),
programming style, practices
and methods. The standard is
known by the relevant parts in
the organisation. The
application is continuously
evaluated and tested as part
of good risk management
practice.

2. Ensure the use of selected
(secure) coding policies and
enforcement of these policies
by use of coding
tools/frameworks integrated
in the programming editor
(e.g. eslint, pylint, pep8, etc.).
The implemented coding
policies are continuously
reviewed and improved upon
when possible.

3. External software
components (including
software libraries) are
selected based on agreed
upon guidelines that have
been implemented
throughout the organisation.
These guidelines are aimed at
compliance with security /
maturity requirements. The
guidelines and the selection
of external tools are
continuously reviewed and
updated.

Develop
(test)

Incorporate risk-based automated
testing as an integral part of the
development workflow. Developers
create and maintain automated test
cases (unit and/or component tests)
that demonstrate the code functions
as intended and adheres to
approved design and coding
standards.

All automated tests are stored in
version control alongside the
codebase to ensure continuous

1. Verify that a risk-based
testing approach is defined
and applied, requiring at
minimum automated unit or
component testing of all
code changes.

2. Confirm that the team
has established, and
documents, explicit
requirements for test
coverage (e.g., percentage
per module or feature),

BAI03.07 Prepare for
solution testing
BAIO7.04 Establish a
test environment
BAIO3.08 Execute
solution testing

1. Testing is an ad hoc
approach and minimum
requirements have
informally been set.

2. Ad-hoc measures or
requirements for test
coverage are set.

1. A (risk based) test
approach is partially
implemented with a
minimum level of tests.

2. Requirements on risk
allowance and test
coverage, or equivalent
industrial standard, are
set but partially
implemented and its
application is not

1. A risk based test approach is
documented and implemented
and requires the execution of at
least Unit Testing or
Component Testing of the code
changes made by the
developer.

2. Requirements on risk
allowance and test coverage,
equivalent industrial standard,
are set and implemented and
are measured and/or reported.

1. Arisk based test
approach is documented and
implemented and requires
the execution of at least Unit
Testing or Component
Testing of the code changes
made by the developer. The
execution of the approach is
measured and periodically
verified.

2. A test approach is
implemented and includes

1. A risk based test approach
is documented and
implemented and requires the
execution of at least Unit
Testing and Component
Testing of the code changes
made by the developer.
Identification of possibilities
for structural improvement is
integral to the test approach.

2. A test approach is
implemented and includes

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 35 van 49

Control description

Control assessment

Relevant COBIT

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

validation and enable reliable testing
of future changes (see control #4 as
well).

aligned with industry
benchmarks or internal
targets. Ensure regular
reviews are performed to
assess test coverage
evolution, adjusting
thresholds or strategies
based on code quality
metrics, defect leakage, or
evolving risk profile.

Confirm the testing
approach allows for
variation in test depth,
coverage, and review
depending on the criticality
of the change (e.g.,
standard vs. critical vs. non-
critical), and that criteria for
classifying change criticality
are clearly documented.

2019 controls

documented well.

requirements on risk
allowance test coverage.
Risk levels and test
coverage, equivalent
industrial standard, is
measured and meets a
minimum required level of
test coverage (%) per specific
code module or equivalent
industrial standard .

requirements on risk

allowance and test coverage.
Test coverage is continually
evaluated for effectiveness
based on a required level of
minimal test coverage (%) per
specific code module,
equivalent industrial standard,
and risk evaluation of
deficiencies. Possibilities for
improvement are identified
and learnings from other
steps must be used to
improve.

Develop A peer review of the code is
mandatory for code changes and are
executed based on the organizations

code review guidelines.

1. The team has
documented code review
guidelines (potentially
incorporating SAST
requirements), based on
best practices such as the
Google Style Guide and,
where relevant, enhanced
with security checks from
the OWASP Application
Security Verification
Standard.

2. Upon local commit, the
developer pushes the code
to a separate branch in the
version control system
(VCS).

3. A pull/merge request is
created and both peer
review by another developer
and automated quality
checks (e.g., build status,
static analysis, unit tests,
SonarQube gates) are
triggered and enforced by
the VCS or pipeline. See also
control #8,9, 10, 11 and 12
on testing.

4. The merge into the main
branch is only permitted
after all peer review
comments are
resolved/approved and
automated quality checks
pass. Failed checks block
the merge; the developer is
responsible for addressing

BAI03.08 Execute
solution testing
BAI03.03 Develop
solution components

1. Code review
guidelines are not
available

2. A branch policy has
not been defined
formally

3. A peer review is not
performed or performed
ad hoc

1. The team uses code
review guidelines for
their peer review,
however these are
informal and not
completely documented
yet.

2. A branch policy is
defined and peer review
is available in the VCS.

3. Peer reviews are
performed, however not
yet enforced in the VCS.

1. Formal code review
guidelines are documented and
available. A minimum rule set
has been defined by the
organisation.

2 & 3. A branch policy is
defined peer reviews are
configured as a mandatory
activity in the VCS.

1. Based on experience
from performed peer reviews
the effectiveness of the code
review guidelines is
measured. Tooling for
automated code review is
used.

2 & 3. A branch policy is
defined peer reviews are
configured as a mandatory
activity in the VCS. Metrics
are defined and reported
upon to identify the number
of merged requests after
peer review and potential
exceptions.

1. Code review guidelines are
continuously improved when
deficiencies are identified.
Tooling for automated code
review is used and
continuously optimised for
purpose.

2 & 3. Automated alerting is
in place when a merge
request is performed without
peer review.

900
100
100
001

1
1
1
[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 36 van 49

Stage Control description Control assessment Relevant COBIT Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5
2019 controls
issues.
5. If applicable, a pair
programming approach may
be accepted as an
alternative to formal review,
provided this is documented
and meets organizational
policy. The process is
enforced through VCS
branch protection and/or
pipeline settings to prevent
bypassing required reviews
and tests.

8 Build All changes to infrastructure and 1. Ensure the build process BAIO3.08 Execute 1. The 1. The 1. During the build process, 1. Execution and 1. The automated
application code are automatically incorporates automated solution testing vulnerability/baseline vulnerability/baseline dependent on the team's risk effectiveness of the vulnerability scans are
tested during the build process security scanning, including DSS05.02 Manage scans and test plans scans and test plans profile, the following automated vulnerability evaluated periodically on
using integrated security tools (e.g., (but not limited to): network and during the build process during the build process automated vulnerability scans scans is measured. effectiveness. Improvements
SAST, automated dependency - Software vulnerability connectivity security regarding regarding are performed (not exhaustive are made where required.
scanning, OS baseline checks). scanning DSS05.07 manage infrastructure/application | infrastructure/application | list): 2. The rules set on failing Checks are made of improving
Builds failing organizationally - Third-party (open-source) vulnerabilities and codes, do not contain codes, contain software, o software vulnerability the build as set by the team vuln. scanning tools to use in
defined security thresholds are component/library scanning monitor the software, code, security code, security and third scanning; are recorded and measured. building process.
blocked from merging for known vulnerabilities infrastructure for and third party aspects. party aspects. o third-party (open-source)

and licensing/compliance security-related events | Ad hoc secure code component/library scanning for 2. The rules set on failing the
issues scanning and informal 2. Rules are set known vulnerabilities and build as set by the team are
- Code dependency use of peer reviews takes informally by the team licensing issues; evaluated periodically.
scanning for weak or place. on falling the build o code dependency scanning Improvements are made
outdated dependencies for (weak) dependencies; where required. Root cause of
- Operating system baseline 2. Ad hoc rule settings o operating system baseline software build errors lead to
scanning on failing the build scanning; new or improved scanning
- Static code analysis o static code analysis tooling.
(including ruleset (conformance to defined
conformance and security rulesets and security testing).
testing)
2. A rules set has been defined
2. Confirm that clear, by the team on failing the build
documented minimum (based on documented minimal
security requirements are requirements).
set by the organization, and
that the build will fail
automatically if these
criteria are not met.
3. Verify that all findings
from security scans are
tracked, assigned, and
remediated within timelines
defined by organizational
policy, with appropriate
follow-up and
documentation.

9 Test After a successful build, the 1.Validate if the team has BAI03.07 Prepare for 1. The integration test 1. The integration test 1. The team has created an 1. Performance indicators on 1. The integration tests
automated delivery process initiates developed a documented solution testing during the delivery during the delivery integration test plan specifying the integration test process during the delivery process
integration testing of the entire code integration test plan BAI07.04 Establish a process regarding process are performed which tests, test methods, test are recorded. regarding changes are
base in a production-like specifying the scope of test environment changes are performed informally. frequency and test tools to performed by a formalized
environment. These integration tests, test methods, BAI03.08 Execute ad hoc. apply for the given change, 2 Compliance of the plan. Management improves
tests—whether automated or frequency, required tools, solution testing 2 The integration test are including the resolution method integration tests with the test planning based on
manual—validate that all and the process for 2 The integration test are performed in a test- to apply. Where applicable a test/QA plans is the performed evaluation of
components interact correctly with resolving test findings. performed in an environment for the generic test plan related to the measured/recorded. test results and test plans.
their dependencies and that major Where appropriate, verify environment, which is application similar to complete solution may apply

that a generic integration not similar to the production environment instead of a test plan per 3. Test/QA plan metrics, test 2 The integration test are

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 37 van 49

#

Stage

Control description

product features function as
intended.

Control assessment

test plan has been defined
for the overall solution, or
that individual test plans are
used for specific changes as
needed.

2. Ensure that a dedicated
test environment is in place,
closely mirroring the
production environment in
terms of configuration and
integrations. To comply
with privacy regulations,
validate that rules and
controls are established for
the use of sensitive data in
testing, for example by
requiring anonymization or
de-identification of personal
data where applicable.

3. Confirm that the test
plan, test environment
setup, and test results are
reviewed and validated with
relevant business
stakeholders, with the
product owner acting as
their proxy if required.
Document stakeholder sign-
off or feedback as part of
the validation process.

4. Ensure that all integration
test findings are logged in a
centralized register or
tracking system. Verify that
findings are actively
monitored, assigned for
follow-up, and resolved in a
timely manner, with clear
audit trails showing status
and actions taken prior to
production release.

Relevant COBIT

2019 controls

Maturity level 1

production environment.

3. Test plan, test-
environment and test
results are not
shared/validated with
stakeholders/Product
owner.

4. Test findings are
registered in an informal
way. A structured
approach, use of logging
and follow up not yet in
place.

Maturity level 2

3. Test plan, test-
environment and test
results are shared in de
DevOps-team (including
Product owner, e.g. not
validated).

4. Test findings are
registered in a database
with name, date, resolve
date, without tracking
information.

Maturity level 3

change.

2. A test environment that is
commensurate with the
enterprise environment is
available (i.e., production-like).
However, to comply with rules
established for test data that
comprises sensitive data, e.g.
rules that specify for which
types of personal data the test
data sets should be
anonymized (de-identified).

3. Test plan, set-up of the test
environment and the test
results are validated with the
business stakeholder (product
owner).

4. A register or log is
maintained for test findings
that need to be resolved.
Tracking is performed in such a
way that team members can
easily follow the resolution of
these findings to ensure safe
delivery.

Maturity level 4

environment variables and
test results are recorded and
measured.

4. Test findings are
recorded and statistics are
used.

Maturity level 5

improved based on the
performed evaluations.

3. Outcomes are shared,
validated and evaluated in
retrospective with the
stakeholders e.g. Product
owner. Based on the
retrospective with the
stakeholders/product owners
improvements are made
regarding the Test plan, test-
environment and test results.

4. Improvements are made for
the test registration if
applicable during the
evaluation appears. Root
causes for findings are
evaluated and fixed.

Test

All testing scripts are developed and

maintained in a version control

system or versioned otherwise. This
includes the test scripts for both the

application code and the
infrastructure.

1. Ensure tests scripts are
documented to ensure all
team members can follow
the test progress
throughout the process.

2. Where structural
(testing) issues are present
due to circumstances that
cannot be remediated in the
short term, these issues are
properly documented
including the cause,
possible mitigation
measures and suggestions
for acceptance of the
associated risk. These

BAI03.08 Execute
solution testing

1. Verified and structured
test scripts used a
limited number of cases.
Testing is ad-hoc and/or
a structured process
lacking.

2. Structural issues are
followed up in an ad-hoc
manner.

1. Test scripting is
partially implemented
and used scripts are
partially stored in a
managed repository.

2. Structural testing
issues are addressed by
ad-hoc incidents/quick-
fixes and are partially
documented/traced.

1. Test scripting is
implemented and is part of a
documented process, using a
system of version control,
verified & approved and also
scripts are stored in a managed
repository.

2. Structural testing issues are
addressed in the product
backlog and also centrally
documented and tracked for
effective and consistent follow-
up.

1. Periodic monitoring and
measurement of the
scripting and the process is
in place.

2. Metrics on Structural
testing are defined and
integrated in quality control.
The follow up on
backlog/testing issues is
measured and clearly shows
how delayed issues are
prioritized based on time on
open status in
backlog/testing issues
listing.

1. Test scripting is
implemented and is part of a
documented process, using a
system of version control,
verified & approved and also
scripts are stored in a
managed repository. Quality
management continuously
evaluates the scripting and
the process to improve.

2. Structural testing issues are
centrally documented, traced
via quality control, assessed
for dependencies and
scheduled for later handling.
The backlog/testing issues

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 38 van 49

#

Stage

Control description

Control assessment

Relevant COBIT
2019 controls

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

issues are proposed is/are continuously monitored

towards the product owner and clearly shows how

for acceptance and proper delayed issues are prioritized

tracking and management based on time on open status

attention. in backlog listing.
Management challenges the
product owner to address
unresolved issues based on
risk and market priority.

11 Test For each release identified as 1. Confirm that the test BAI03.08 Execute 1. Test approaches and 1. The test approach and 1. The defined test approach 1. The execution of security 1. The defined test approach
requiring additional security approach and test plan solution testing test plans do not or test plans informally / and test plans contain security testing according to defined and test plans effectiveness is
assurance—based on risk explicitly define when DSS05.02 Manage inconsistently address indirectly address testing and testing frequency test approach and test plans measured and evaluated
assessment, non-functional releases require additional network and security aspects. security testing and and is carried out according to is measured. periodically and
requirements, or threat modelling— security assurance, based connectivity security testing frequency. plan. improvements are identified.
targeted security tests (e.g., manual on documented risk DSS05.07 manage 2. The qualifications of 2. Metrics on security testing
code review, vulnerability scanning, assessment, non-functional vulnerabilities and the team members 2. The team members 2. Security scans are are available and reported. 2. Security testing activities
penetration testing) are performed requirements, or threat monitor the performing the security performing the security performed/reviewed by team are periodically evaluated and
to validate residual risks. Findings modelling. Verify that the infrastructure for testing is unknown. testing have members with the proper and 3. Meaningful / relevant improvements identified and
are prioritized, communicated to chosen security testing security-related events qualifications, but these documented qualifications. metrics on exceptions are documented.
relevant stakeholders, and tracked methods (e.g., manual code 3. Not all security based are not documented. available.
to resolution. review, vulnerability test findings are 3. Exceptions are well 3. Periodically the metrics,

scanning, penetration registered and 3. Exceptions are documented, prioritized and exceptions and the process

testing) are suitable for the prioritized. informally prioritized and | followed up. for exceptions (handling) is

identified risks. followed up, however periodically evaluated and
this cannot be improved.

2. Ensure that those determined based on

performing or reviewing the documentation.

security testing have

relevant qualifications and

experience appropriate to

the risk and testing method.

3. Verify that all security

findings are systematically

registered, risk-prioritized,

and assigned owners for

follow-up. Additionally,

ensure that test results and

identified risks are

communicated promptly

and appropriately to the

product owner and other

affected stakeholders—

including privacy,

compliance, or business

representatives when

relevant.

Note: Confirm that,

although not mandatory,

periodic validation/review of

the overall security test

approach is performed with

experts from the central

security or risk team.

12 Test User Acceptance Testing (UAT) is 1. Ensure that UAT is BAI07.03 Plan 1. The test environment, 1. A production-like test 1. A production-like test 1. A production-like test 1. A production-like test
conducted on the finalized software performed in a production- acceptance tests when available, is not environment has been environment has been set up environment has been set up | environment has been set up
build in a production-like like environment BAI07.04 Establish a fully production-like. set up. and the requirements are and the requirements are and the requirements are
environment, focusing on key established according to test environment documented. documented and metrics on documented and periodically
business scenarios. Business process organizational standards. BAI0O7.05 Perform 2. The business owner is 2. The business owner is similarity are available. verified and continuously
owners and end users actively Validate that test data used acceptance tests insufficiently involved in informally involved in the 2. The business owner is improved.
participate in UAT to validate that in UAT complies with the test process. test process. involved in the test process and 2. The business owner is

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 39 van 49

Control description

the solution meets business
requirements and acceptance
criteria. Any exceptions or defects
identified are documented, tracked,
and resolved prior to go-live.

(Automated) User Acceptance
Testing (UAT) is performed on the
created software build in a
production like environment are
performed, and noted exceptions
are followed up. Business process
owners and end users are involved
in the UAT test.

Control assessment

privacy and data protection
requirements (e.g.,
anonymization of any real
personal data).

2. Confirm that a UAT plan
is in place, defining specific
business processes, key
user scenarios, acceptance
criteria, and roles for
business process owners
and end users. Verify active
involvement of designated
business process owners
and end users in test
execution. Confirm that test
results and user feedback
are reviewed and formally
accepted by the business
stakeholder(s) or product
owner.

3. Ensure all UAT findings
and exceptions are logged
in a tracking system,
prioritized, and addressed
promptly. Confirm that
resolution of all critical
findings is completed prior
to production release, and
that final business
acceptance is documented.

Note: In a modern Cl/CD
approach, where the
automated tests in the
Unit/Component Testing
(#6) and Integration Testing
phases (#9) cover all
business rules, UAT tests
are typically only needed to
cover key usage scenarios.

Relevant COBIT
2019 controls

Maturity level 1

3. A log of test findings
is not or partially
available.

Maturity level 2

3. A log of test findings
is available, but not
always consistently
updated.

Maturity level 3

the persons role is
documented.

3. A log of test findings is
available, complete and
maintained.

Maturity level 4

involved in the test process
and his role is documented.
A periodical check exists to
verify whether the business
stakeholders executes his
role.

3. Alog of test findings is
maintained. Metrics on log
characteristics are available.

Maturity level 5

2. The business owner is
involved in the test process
and his role is documented.
The role execution by
business owners is
periodically evaluated.

3. A log of test findings is
maintained. The test process
is evaluated periodically
based on the log findings.

Producti
on
Deploy

Approved and tested deliveries are
(automatically) deployed to the
production environment.

1. Confirm that
deployments are performed
strictly according to the
documented change
management process, which
must describe the CI/CD
workflow and define change
categories (e.g., standard,
normal, emergency).

2. Verify that criteria for
identifying and approving
Standard (pre-
approved/low-risk) changes
are well-defined (e.g.,
infrastructure updates,
configuration tweaks).
Check if specific
requirements for these

Not applicable

1. Change organization
doesn't have procedure
in place for their
improvement and
deployment process.

2. Criteria and
requirements for
standard changes are not
(yet) defined.

3. Deployed changes are
not related to the original
change-request and no
structural use of backlog
system.

4. No fallback scenario
available for deployed

1. Informal procedures
for CI/CD are in place

supporting structured

deployment.

2. Criteria and
requirements for
standard changes are
informally used but not
always consistently
applied.

3. A planning and
backlog system for
changes is in place but
not yet used in a
consistent way for
managing deployment.

1. Deployment is performed
based on the change
management procedure
describing the CI/CD process.
The procedure describes the
different change categories:
Standard, normal and
emergency changes.

2. The criteria for Standard
changes and the requirements
for these changes e.g. do they
need to be registered in the
planning tool or is tracking in
the VCS sufficient, what level of
automated testing needs to be
performed, is peer-approval
required if sufficient automated
testing are available.

1. The performance of
delivery process is measured
on a constant base.

2. The applicable criteria and
requirements regarding
deployed changes are
measured consistently.

3. The relation between de
deployed changes and the
original request is measured
consistently.

4. Performance of the fall
back process for failed
deliveries is measured and
execution of analysis is
monitored.

1. Analyzing on a continuous
basis of the CI/CD procedures
lead to structural
improvement of the change
management process.

2.Criteria for standard
changes are evaluated on a
regular basis supporting
improvement of these criteria
and effective planning and
backlog management.

3. All deployed changes can
be linked to their respective
change tickets in the backlog
management system
supporting continuously
improvements features and

900
100
100
001

1
1
1

[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 40 van 49

Stage

Control description

Control assessment

Relevant COBIT

Maturity level 1

Maturity level 2

Maturity level 3

Maturity level 4

Maturity level 5

changes are applicable e.g.,
for documenting,
registering, tracking, and
approving these changes.

3. Ensure all deployments
are traceable to
corresponding change
request, incident, or feature
tickets (e.g., via integration
with JIRA or by referencing
ticket numbers in VCS
commit messages
connected to deployments).
Confirm linkage of
deployments to user stories,
defects, or incidents for
improved auditability and
context.

4. Check that failed
deployments have a clearly
defined fallback mechanism
(rollback or fix forward)
with pre-documented steps.
If applicable, verify that
failures trigger a post-
mortem or retrospective
review, analysing root
causes and driving
continuous improvement in
the delivery pipeline.

5. Confirm that all code
deployments are executed
exclusively via automated,
closed CI/CD pipelines—
manual interventions or ad
hoc scripts are not
permitted for production
deployment.

2019 controls

changes and failures are
not analyzed.

5. Production
deployments are
performed manually
using scripts or direct
server access, without
automation or
traceability.

4. Fallback scenario are
in most cases available
for deployed changes.

5. CI/CD pipelines exist
but are not consistently
used; manual
deployments still occur
and are not formally
restricted or tracked

3. The deployed changes are

related to the respective change

request tickets in the planning
& backlog tool to allow more
context for the executed
changes such as linking them
to feature defects, incidents or
user stories.

4. Failed deliveries have clear
fallback scenario (rollback / fix
forward) and failures are
analyzed to support optimizing
the delivery pipeline.

5. All production deployments
are executed via automated
CI/CD pipelines, with manual
interventions formally
prohibited and traceable to
change requests

5. Deployment automation is
enforced and monitored;
metrics are collected to
measure compliance, and
exceptions are logged and
reviewed

stories.

4. All analyses of failed
deliveries are evaluated on
their value for improvements
of fallback scenario leads and
continuous improvement of
the delivery pipeline leading
to a decrease of failed
deliveries.

5. Deployments are fully
automated and continuously
improved; manual access is
technically blocked, and
failures trigger automated
rollback and root cause
analysis

14 Producti
on
Deploy

Establish and maintain a monitoring
approach for all business solutions
and applications managed by the
team, including their service
delivery, to ensure alignment with,
and measurable contribution to,
enterprise objectives.

1. Engage relevant
stakeholders (e.g., business
owners, operations, IT) to
define clear monitoring
objectives, scope, and
measurement methods for
each business solution or
service.

2. Verify the existence of a
documented monitoring
plan covering agreed
KPls/metrics, data sources,
monitoring tools, roles and
responsibilities, and review
frequency.

3. Ensure the monitoring
approach is kept up to date
and that outcomes are

MEAO01.01

A monitoring approach
for system functioning

and performance is not
in place or agreed upon
with stakeholders.

A monitoring approach
exists and is applied
consistently for some
solutions and services.
Procedures are generally
followed, but
documentation and
evidence of monitoring
activities or outcomes
may be incomplete or
informal.

A process for monitoring
system functioning and
performance is in place,
approved and documented.
Criteria for functioning and
performance failure have been
defined by management.

IT, development and end
users record any failures and
issues with (new)
functionality and system
performance. Satisfaction of
stakeholders regarding
meeting defined business
and process goals is
measured using at least
DevOps criteria as: lead time
for changes, change failure
rate, deployment frequency
and mean time to recovery.

Management and
development teams
periodically assess the
outcomes of the monitoring
activities and improvements
are identified and defined by
stakeholders.

900
100
100
001

1
1
1
[

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in Control — January 2026

Page 41 van 49

Stage Control description Control assessment Relevant COBIT

Maturity level 1 Maturity level 2 Maturity level 3

Maturity level 4 Maturity level 5
2019 controls

periodically reviewed with
key stakeholders to drive
continual improvement.

DE BEROEPSORGANISATIE VAN IT-AUDITORS DevOps in Control — January 2026
Page 42 van 49

4. Conclusion

As Forrester describes it, “Agile is the foundational pillar of the tech industry.” Backed by 95%
of professionals who affirm its critical relevance to their operations, and 58% of business and
technology leaders who prioritize Agile adoption, the message is unmistakable: Agile isn’t
just enduring, it’s thriving. While its dominance remains clear, there’s also a growing
consensus that continuous refinement is essential to meet the evolving demands of modern
business’.

The use of these principles is also adopted within (highly) regulated environments. A specific
example is the cloud.gov platform [4] of the US Federal Government, a Platform as a Service
(PaaS) solution for US government agencies deployed in the AWS GovCloud region. This
platform is built based on Agile and DevOps principles, while at the same time meeting the
requirements of a highly regulated environment (FedRAMP and FISMA) [5].

Why, we might ask?

This is answered perfectly by Gartner. They state, because: “Every business is a digital
business. Every company is a software company. The key to gaining and sustaining
competitive advantage in digital business, and a role in a digital society, will be in the
development and continuous improvement of new IT-enabled capabilities and services for
customers” [41].

ISACA adds that DevOps is the combination of people, culture, processes, tools and
methodologies that reduce risk and cost, enable technology to change at the speed of the
business, and improve overall quality [37].

The application of Agile and DevOps principles and the achieved high-level of automation
provides opportunities for the organization to enhance their audit approach to become more
effective (higher level of assurance) and more efficient (less time). This is possible due to:

e The use of a Version Control System (VCS) and Infrastructure as Code (1aC) principles
gives full insight in all changes to the application source code and infrastructure
components by recording who, what and when changes occurred (paragraph 2.2).

e The application of laC gives easier insight in the security baselines used to deploy
instances. Testing of the proper application of security baselines on instances is
often a very time-consuming and difficult control activity. Furthermore, the auditor
can easily verify when recommended infrastructure security configuration settings
have been applied whereas this is also difficult to assess when configurations are
managed without application of automated configuration management [37].

e The ability to automatically execute code, vulnerability, dependency scanning tools
on each change instead of the common periodic/monthly frequency and track the
follow-up of relevant findings through the VCS and laC logs instead of tickets in the
service management tool (paragraph 2.3).

DevOps in control — January 2026
Page 43 of 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

https://www.forrester.com/blogs/amidst-the-ai-hype-agile-still-remains-relevant-in-2025/

e Normalization and standardization of the environment (within more mature teams),
often by using a Shared Services teams, results in the consistent and reliable
automation of controls (paragraph 2.3).

e The availability of automated controls within the Delivery pipeline opens the
possibility for the application of a system-based audit based on Reperformance test
procedures as much as possible instead of Procedural-based audits based on
Inspection of samples and formalized documents (paragraph 3.3).

e For organizations which are not yet mature enough to apply higher levels of
standardization and automated controls, the FEAT testing approach has been
introduced to be applied until the criteria are met to use a system-based audit
(paragraph 3.3).

e Use of the several available Culture frameworks and surveys to assess the maturity
of DevOps within organizations and teams can help in properly tailoring the control
framework (paragraph 3.2).

In paragraph 3.4 an updated maturity control framework has been presented which gives an
overview of the controls that are necessary to be implemented within the Delivery pipeline in
order to achieve the Change management control objective. Now organizations and IT
auditors can also evaluate at which level of maturity they operate at mitigating risks in
development and operations for their organizations.

Even if organizations have not yet adopted Agile and DevOps formally, it is recommended
that audit, risk and security professionals keep these practices on their radar and develop an
understanding of their characteristics. DevOps approaches might find their way into the
organization rapidly (perhaps through shadow adoption or as the result of a merger or
acquisition). ISACA emphasizes the importance of IT auditors being prepared and having a
seat at the table, to be able to timely discuss the context, associated risks and relevant
security and audit controls [37]. We all know Benjamin Franklin’s famous quote “By failing to
prepare, you are preparing to fail”. IT auditors and other assurance professionals are in a
symbiotic relationship with the IT department/teams and therefore must constantly prepare
and gain knowledge of new IT technologies and principles.

DevOps in control — January 2026
Page 44 of 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

Appendix A: Reference list

(1]

[2]

(3]

(4]
(5]
(6]
(7]

(8]
)
[10]

(1]

[12]

[13]
[14]
[15]

[16]
(7]

[18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]

[26]

[28]

DE BEROEPSORGANISATIE VAN IT-AUDITORS

Kim, G; Humble, J; Debois, P; Willis. (2016). The DevOps Handbook - How to create world-class agility,
reliability, & security in technology Organizations. Portland, United States of America: IT Revolution press,
LLC.

Kim, G; Behr, K; Spafford, G. (2013). The Phoenix Project. A novel about IT, DevOps, and helping your
business win. Portland, United States of America: IT Revolution press, LLC.

State of DevOps 2018. Consulted on November 4th 2025 on https://live-puppet-
p4.pantheonsite.io/resources/history-of-devops-reports#2018

What is cloud.gov. Consulted on May 19th 2019, on https://docs.cloud.gov/
How we work. Consulted on May 19th 2019, on https://18f.gsa.gov/how-we-work/
IT Revolutions. (2015). DevOps Audit Defense Toolkit.

Theory of constraints. Consulted on May 19th 2019, on
https://nl.wikipedia.org/wiki/Theory_of_constraints

Lean manufacturing. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Lean_manufacturing
Toyota Kata. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Toyota_Kata#References

Fowler, M; Highsmith, J. (2001). The agile manifesto. Consulted on May 19th 2019, on
https://agilemanifesto.org/iso/en/principles.html

Fowler, M. (2018 February 26th). The practical test pyramid. Consulted on May 19th 2019, on
https://martinfowler.com/articles/practical-test-pyramid.html

DORA DevOps Assessment. Consulted on May 19th 2019, on https://devops-
research.com/assessment.html

Microsoft DevOps self-assessment. Consulted on May 19th 2019, on https://www.devopsassessment.net/
Toyota Kata. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Toyota_Kata#References

Secure Software Alliance - Framework Secure Software. Consulted on May 19th 2019, on
https://securesoftwarealliance.org/framework-secure-software/

Deming’s principles. Consulted on July 11th 2019, on https://en.wikipedia.org/wiki/W._Edwards_Deming

IT Revolution. (2018). Dear Auditor. DevOps community to Security with love. Consulted on July 12th
2019, on https://itrevolution.com/product/dear-auditor/

https://en.wikipedia.org/wiki/Waterfall_model
Benington, H.D. (1983). Production of Large Computer Programs. IEEE Educational Activities Department.
Royce, W. (1970). Managing the development of large software systems. IEEE WESCON.

Bell, T; Thayer, T.A. (1976). Software requirements: Are they really a problem? California. TRW Defense
and Space Systems group.

Singleton, T.W. (2010). The minimum IT controls to assess in a financial audit (part 2). ISACA journal
volume 2, 2010.

Casteren, W van. (2017). The waterfall model and agile methodologies: A comparison by project
characteristics. Open Universiteit Nederland.

DevOps Topologies. Consulted on May 19th 2019, on https://web.devopstopologies.com

What is Infrastructure as code. Puppet labs. Consulted on May 19th 2019, on
https://puppet.com/blog/what-is-infrastructure-as-code

Fowler, M. (2006). Continuous Integration. Consulted on May 19th 2019, on
https://martinfowler.com/articles/continuousintegration.html

Brodie, S. (2019). From Agile to DevOps to Continuous delivery. Consulted on May 19th 2019, on
https://techbeacon.com/app-dev-testing/agile-devops-continuous-delivery-evolution-software-delivery

0001
1001
1001
0010

DevOps in control — January 2026
Page 45 of 49

https://live-puppet-p4.pantheonsite.io/resources/history-of-devops-reports#2018
https://live-puppet-p4.pantheonsite.io/resources/history-of-devops-reports#2018
https://docs.cloud.gov/
https://18f.gsa.gov/how-we-work/
https://nl.wikipedia.org/wiki/Theory_of_constraints
https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Toyota_Kata#References
https://agilemanifesto.org/iso/en/principles.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://devops-research.com/assessment.html
https://devops-research.com/assessment.html
https://www.devopsassessment.net/
https://en.wikipedia.org/wiki/Toyota_Kata#References
https://securesoftwarealliance.org/framework-secure-software/
https://en.wikipedia.org/wiki/W._Edwards_Deming
https://itrevolution.com/product/dear-auditor/
https://en.wikipedia.org/wiki/Waterfall_model
https://web.devopstopologies.com/
https://puppet.com/blog/what-is-infrastructure-as-code
https://martinfowler.com/articles/continuousIntegration.html
https://techbeacon.com/app-dev-testing/agile-devops-continuous-delivery-evolution-software-delivery

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]

[46]

DE BEROEPSORGANISATIE VAN IT-AUDITORS

AICPA. (2018). Understanding the entity and its environment and assessing the risks of material
misstatement.

Gartner. (2018). Seven Imperatives to adopt a CARTA approach.
Lencioni, P. (2002). The five dysfunctions of a team. John Wily & Sons.
PwC. (2013). Building digital trust - The confidence to take risks

Costa, A; Anderson, N. (2010). Measuring trust in teams: Development and validation of a multifaceted
measure of formative and reflective indicators of team trust. Brunel University, Uxbridge, UK.

Westrum, R. (2004). A typology of organizational cultures. Quality Safety Health care publication 13(suppl
2).

Google Project Aristotle. (2014): https://rework.withgoogle.com/intl/en/guides/understanding-team-
effectiveness

DevOps Enterprise Forum. (2015). Measure efficiency, effectiveness, and culture to optimize DevOps
transformation. IT Revolution.

ISACA. (2015). DevOps Overview. An ISACA DevOps series white paper.

Plutora. (2019). Infrastructure as code: What is it, and why should my engineers care? Consulted on May
19th 2019, on https://www.puppet.com/blog/what-is-infrastructure-as-code

Consultancy.nl. (2018). Continuous integration, continuous delivery: de stap na agile. Consulted on May
19th 2019, on https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-
stap-na-agile.

ISACA. (2018). COBIT 2019 framework. Governance and Management Objectives.

Sondergaard, P. (2013). Everyone is a technology company. Gartner. Consulted on May 19th 2019, on
https://blogs.gartner.com/peter-sondergaard/everyone-is-a-technology-company/

Digital Al. DevSecOps Tools Periodic Table.
Bagmar, A. (2012). Behavior Driven Testing (BDT) in Agile. Consulted on August 28" 2019, on

Postma, S. (2015). Schuberg Philis Delivery Pipeline. Schuberg Philis.
Fowler, M. (2014). Canary release. Consulted on August 30" 2019, on

Gangaram Panday, S. (2015). Introducing the Full population & Exception Analysis Testing (FEAT) method.
Schuberg Philis.

0001
1001
1001
0010

DevOps in control — January 2026
Page 46 of 49

https://rework.withgoogle.com/intl/en/guides/understanding-team-effectiveness
https://rework.withgoogle.com/intl/en/guides/understanding-team-effectiveness
https://www.puppet.com/blog/what-is-infrastructure-as-code
https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-stap-na-agile
https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-stap-na-agile
https://blogs.gartner.com/peter-sondergaard/everyone-is-a-technology-company/
https://digital.ai/learn/devsecops-periodic-table/
https://www.slideshare.net/abagmar/anand-bagmar-behavior-driven-testing-bdt-in-agile
https://martinfowler.com/bliki/CanaryRelease.html

Appendix B: Acronym list

Al
AICPA
API
ASVS
AWS
BCP
BDT
CAAT
CAB
CARTA
CD

(@]
COBIT
CD

Dev
DevOps
DevSecOps
DORA
DRP
DSDM
EDP
FEAT
FedRAMP
FISMA
GRC
laC
IEEE
ISACA
ISAE

IT
ITGC
NOREA
Ops

(00
OWASP
PaaS
PRINCE2
RE
RMM
SAS
SIT
SSA
SSH
ToC
TRW
UAT
UK

us

uT

VCS
WESCON
XP

DE BEROEPSORGANISATIE VAN IT-AUDITORS

Artificial Intelligence

American Institute of Public Accountants
Application Programming Interface

Application Security Verification Standard
Amazon Web Services

Business Continuity Planning

Behavior Driven Testing

Computer Assisted Auditing Technique

Change Advisory Board

Continuous Adaptive Risk and Trust Assessment
Continuous Delivery

Continuous Integration

Control Objectives for Information and related Technology
Continuous Delivery

Development

Development and Operations

Development, Security and Operations

DevOps Research and Assessment

Disaster Recovery Planning

Dynamic Systems Development Methodology (now Atern)
Electronic Data Processing

Full population & Exception Analysis Testing
Federal Risk and Authorization Management Program
Federal Information Security Management Act
Governance, Risk and Compliance

Infrastructure as Code

Institute of Electrical and Electronics Engineers
International Systems Audit and Control Association
International Standard for Assurance Engagements
Information Technology

IT General Controls

Nederlandse Orde van Register EDP-Auditors
Operations

Operating System

Open Web Application Security Project
Platform-as-a-Service

Projects In Controlled Environments 2

Register EDP-Auditor

Risk of Material Misstatement

Statements on Auditing Standards

System Integration Test(ing)

Secure Software Alliance

Secure SHell

Theory of Constraints

Thompson Ramo Wooldridge

User Acceptance Test(ing)

United Kingdom

United States

Unit Test(ing)

Version Control System

Western Electronics Show and Convention
eXtreme Programming

nnnnn

DevOps in control — January 2026

Page 47 of 49

Appendix C: Initial waterfall phases

OPERATIONAL PLAN
MACHINE OPERATIONAL
SPECIFICATIONS SPECIFICATIONS,

PROGRAM
SPECIFICATIONS

Y

CODING SPECIFICATIONS

I
i
|
|
J

-

k--——.--_—-—-- A ks e e wn Sy G G el s e e G gy S

CODING]

——meli-

DESIGN

———— PARAMETER TESTING
TESTING (SPECIFICATIONS)

e o o o e . -

ASSEMBLY TESTING
(SPECIFICATIONS)

I SYSTEMEVALUATION I-q.--..._

Figure 4. Program production. Production of a large-program system proceeds from a general operational plan
through system evaluation; for example, assembly testing verifies operational and program specifications.

i
|
|
!
|
|
!
!
!
!
|
|
|
|
|
|
i
I
|
1
|
{
I
d

Figure 8: Initial waterfall phases [19]

DevOps in control — January 2026
Page 48 of 49

DE BEROEPSORGANISATIE VAN IT-AUDITORS

Appendix D: Periodic table of DevOps tools

B sioes [l otebase vanagement. [Retcase Mancgement [B5z0es At
ﬁ;’r‘f.;’;é’rﬁ?ﬁf e . Deployment . Security

[corboretion Enterprize Agile Source Coniral
STt IT Service Management . Testing

. Container Orchestration . PaaS/Container Service [Y2ue Stream

Management
Il cotous megration [Pusic cous

[[—

Figure 9: Digital Al. DevSecOps Tools Periodic Table [42]

DE BEROEPSORGANISATIE VAN IT-AUDITORS

DevOps in control — January 2026
Page 49 of 49

