
 

 

 

 

DevOps  

in control  

A study report by NOREA  

Author: S. Gangaram Panday MSc RE CISA - Brightlyn      

Update 2026: Workgroup DevOps & Agile in Control 

©     2026 NOREA, All rights reserved 

Postbus 242, 2130AE Hoofddorp 

phone: 088-4960380 

e-mail: norea@norea.nl 

www.norea.nl 



 

 

 

DevOps in Control – January 2026 

Page 2 van 49  
 
 
 

Accountability 

      

This study report has been  published by the NOREA, the professional organization of IT 

auditors in the Netherlands, and has been developed to give  Dutch qualified IT auditors 

(Register IT auditors, RE’s) guidance in assessing the quality of Agile and DevOps practices. 

      

 

Version control 

 

 

Version Date Changes 

1.0 09-2019 Publication of initial version by S. Gangaram 

Panday 

2.0 01-2026 Updates to several paragraphs of this study 

report 

Updates to the control descriptions 

Merging of control 7 & 8 

Addition of control 14 as a new control 

Addition of maturity levels  

      

 

Participants of the  DevOps & Agile in Control work group  

 

• Sandeep Gangaram Panday MSc RE CISA  (chair) 

• Pieter Jolen MSc RE 

• ir. Jean-Jacques Bistervels RE CIA CFSA CDPSE CRISC CCP 

• Zubair Yaseen MSc RE RA CIA 

• Than Son Nguijen 

• Edwin Galama RE RA 

• Paul van Kemenade   

• Boris Cuijpers 

 

 

The DevOps Control Framework is also available in Excel:  

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-

development  

  

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development
https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development


 

 

 

DevOps in Control – January 2026 

Page 3 van 49  
 
 

Contents  

1. Introduction 4 

1.1 Motivation and goal 4 

1.2 Method of research and approach 5 

1.3 Limitations on the scope 6 

1.4 Layout of the report 7 

 

2. Waterfall, Agile and DevOps           8 

2.1 Waterfall 8 

2.2 Agile 9 

2.3 DevOps 12 

 

3. DevOps in Control           19 

3.1 Determining the methodology being used       19 

3.2 Culture maturity assessment 20 

3.3 Control assessment 22 

3.4 The DevOps control framework 29 

 

4. Conclusion            43 

 

  



 

 

 

DevOps in Control – January 2026 

Page 4 van 49  

1. Introduction 

 

In recent years, Agile, DevOps and now DevSecOps have become the dominant approaches 

for modern software delivery, not only within technology-driven companies but also in highly 

regulated sectors such as financial services, government, and critical infrastructure. 

Organizations increasingly rely on autonomous, cross-functional teams, cloud-native 

platforms, automated pipelines, and integrated security tooling. Delivery cycles have 

accelerated dramatically, with many teams deploying multiple times per day using 

standardized CI/CD capabilities. Documentation, quality checks, and even security controls 

are embedded directly into tools, logs, and automated workflows rather than produced as 

traditional artefacts. 

For IT auditors, risk professionals and security specialists, this shift introduces new challenges 

and expectations. Many established audit frameworks were designed for phased 

development, long release cycles, and manual approval processes. These assumptions no 

longer align with environments where changes are deployed continuously, infrastructure is 

defined as code, testing is automated, and system-generated evidence replaces traditional 

documentation. At the same time, regulators increasingly expect organizations to 

demonstrate operational resilience, secure software development, and robust change 

governance. Regulations such as DORA and NIS2 and updated ISO standards highlight the 

importance of understanding modern delivery practices and the risks inherent in 

high-velocity, highly automated environments. 

This updated 2026 edition of the DevOps in Control study report aims to bridge the gap 

between modern engineering practices and the expectations of auditors and risk 

professionals. It provides practical guidance on assessing Agile and DevOps environments, 

supported by a control framework and maturity model that reflect the current state of the 

industry. The goal is to help auditors evaluate both the technical and cultural aspects of these 

practices, understand where automated controls can be relied upon, and recognize where 

additional assurance activities are needed. 

1.1 Motivation and goal 

NOREA is the Dutch association of IT auditors. As stated on its website the goal of NOREA is 

threefold: 

1. Promote the quality of the professional practice of IT auditors 

2. Promote the further development of the IT audit profession 

3. Take care of the common interest of the members 

The second goal, especially, is the reason NOREA identified the need to publish a study report 

on a control approach for new software development techniques that are being widely used 

nowadays. Several research papers and whitepapers conclude that DevOps indeed requires a 

different control approach. One important example is the published COBIT 2019 framework 

which mentions that DevOps “definitely requires specific guidance” [40]. 



 

 

 

DevOps in Control – January 2026 

Page 5 van 49  

DevOps is a fact and the number of organizations adopting the DevOps principles is growing 

rapidly, as appears from the availability of several detailed step-by-step implementation 

guidance with the inclusion of use cases of many organizations [1] [2]. Rejecting the transition 

to DevOps is not an option anymore. Especially because we also see application of these new 

approaches in (highly) regulated markets which is often the focus of many auditors. A specific 

example is the cloud.gov platform [4] of the US Federal Government, a Platform as a Service 

(PaaS) solution for US government agencies. This platform allows the use of Agile and DevOps 

methodologies, while at the same time meeting the requirements of a highly regulated 

environment (FedRAMP and FISMA) [5]. We want to take this as an inspirational example for 

applying these principles within highly regulated environments. 

Or as stated by Gartner: “Every business is a digital business. Every company is a software 

company. The key to gaining and sustaining competitive advantage in digital business, and a 

role in a digital society, will be in the development and continuous improvement of new IT-

enabled capabilities and services for customers” [41]. 

The goal for this study report is to provide IT auditors, but also other information security 

and risk professionals, with a basic introduction and a control framework to mitigate the key 

IT risks associated with Agile and DevOps principles and to evaluate the level of maturity of 

controls.       

We have not specifically referenced which controls are required at a minimum for the Annual 

accounts audit because we want to emphasize that there is not one universal Agile or DevOps 

approach (as also emphasized in COBIT 2019). Each implementation, that we as auditors 

might observe, will have its own unique approach towards implementing the core Agile and 

DevOps principles. For example, a DevOps setup that is fully focused on the e-commerce 

front-end will be different from the back-end setup of a bank. In the end the IT auditor will 

therefore need to properly assess the specific implementation that needs to be audited and 

cautiously select the proper controls from the control framework presented in this study 

report. 

1.2 Method of research and approach 

The DevOps (maturity) control framework that is presented in this study report is built upon 

the ever-increasing number of articles, (research) papers, books and best practice models 

about Agile and DevOps (see the Reference list in Appendix A). The leading paper with 

guidance on DevOps auditing is the DevOps Audit Defense Toolkit which is currently the most 

elaborative control framework for DevOps and gives detailed work instructions on how to 

implement and assess change management within DevOps environments [6]. However, we 

stress that we wanted only to provide a ‘lean and mean’ framework which covers the most 

detrimental risks in a DevOps environment.       

We additionally want to state that the vision, knowledge and approaches presented in this 

paper are also based on the authors experiences with auditing software development projects 

where Waterfall, Agile and DevOps techniques were applied.  Additionally, several interviews 

with engineers, IT managers and project managers were part of the research. 

Initially with the first version of the report, the control framework was not mapped with best 

practice IT governance or control models, because there was no fit with the models available 

at the time. At the end of 2018, ISACA published its 2019 upgrade of COBIT (Control 

Objectives for Information and Related Technologies), which acknowledges the need for a 

different control approach to accommodate auditing of DevOps environments. Because the 

COBIT frameworks are widely accepted and used by IT auditors below is a summary of the 



 

 

 

DevOps in Control – January 2026 

Page 6 van 49  

most important changes and/or additions in COBIT 2019 compared to the previous version 

(COBIT 5) regarding this subject:  

● Emphasis on the importance of tailoring the IT governance and control frameworks 

to the specific organizational context instead of using off-the-shelf control 

frameworks.  

● Acknowledging the importance of the cultural aspect by mentioning that senior 

management must actively steer on achieving a different mindset and culture for 

delivering value from IT. 

● Rectification of the often encountered (i.e., narrow) interpretation suggested by the 

GRC (Governance, Risk and Compliance) acronym. The GRC acronym itself implicitly 

suggests that compliance and risk represent the spectrum of governance (“we make 

the mistake that risk and compliance direct governance whereas they go hand-in-

hand and support each other”).  

● Mentioning of open and flexible architectures and control frameworks, aligned to 

major standards, as one of the three principles of a governance framework. 

● Adding the Design Factors and Focus Areas to the scoping and creation of the 

framework. DevOps is specifically included as one of the Focus Areas (because 

"DevOps is a current theme in the marketplace and definitely requires specific 

guidance").  

● Based on the COBIT 2019 Design Guide, specifically the following COBIT controls are 

recommended to be included (and tailored) for DevOps environments: BAI02 

(Managed requirements definition), BAI03 (Managed solutions identification and 

build) and BAI06 (Managed IT changes), along with a reference to a yet to be 

published DevOps paper. These controls have been included in our DevOps control 

framework in paragraph 3.4. The reader will therefore see that the presented control 

framework has been aligned with COBIT 2019 on several aspects.  

Furthermore, alignment has been sought with the security control framework developed by 

the Secure Software Alliance (SSA) specifically for Agile software development. This framework 

provides security related controls for all phases of software development and was initially 

created by a group of Dutch software security firms supported by the Dutch Ministry of 

Economic Affairs. The SSA framework is free for use and can be downloaded from their site 

[15].  The framework consists of 4 control domains: Context, Threats, Implementation and 

Verification. In this guide we have mostly focused on the controls within the Implementation 

and Verification phases of the SSA framework. 

1.3 Limitations on the scope 

We developed this study report using an Agile approach as well, which means that this study 

report is the second iteration. Based on market demand and interest, we will define the focus 

point for our next iteration. With this approach we also want to emphasize that this second 

iteration is by no means meant to be complete and covering the full picture but has a focus 

on the essential risks and associated controls that we gathered based on feedback from the 

first iteration.       



 

 

 

DevOps in Control – January 2026 

Page 7 van 49  

1.4 Layout of the report 

In chapter 2 we briefly introduce the Waterfall methodology as an example of a more 

traditional software development methodology because Waterfall is the most well-know 

methodology among IT auditors. Chapter 2 also includes an introduction of the Agile and 

DevOps software development principles to provide a comparison between these 3 

approaches and to be able to better understand the control framework presented in paragraph 

3.4.  

In chapter 3 we present the approach on auditing Agile and DevOps environments. In 

paragraph 3.1 we introduce the auditor with some guidance to make sure the right type of 

controls is selected. In paragraph 3.2 a short introduction of the relevance and impact of the 

Agile and DevOps culture is given. The reader is provided with some references of models 

that can be used to measure the Agile and DevOps culture within a team which are useful 

tools for the auditors. In paragraph 3.3 guidance is provided on which testing approach to 

select and finally in paragraph 3.4 the Agile and DevOps (maturity) control framework is 

presented. 

In chapter 4 the updated conclusion is presented.  

  



 

 

 

DevOps in Control – January 2026 

Page 8 van 49  

2. Waterfall, Agile and DevOps 

2.1 Waterfall  

Wikipedia provides the following definition (July 2019): “The waterfall model is a breakdown 

of project activities into linear sequential phases, where each phase depends on the 

deliverables of the previous one and corresponds to a specialization of tasks. The approach 

is typical for certain areas of engineering design. In software development, it tends to be 

among the less iterative and flexible approaches, as progress flows in largely one direction 

("downwards" like a waterfall) through the phases of conception, initiation, analysis, design, 

construction, 

testing, deployment and maintenance.” [18].  

To properly understand the waterfall software development methodology, it is important to 

take a closer look at the time when waterfall originated and how it originated. Below we 

attempt to give a short summary of this history: 

● The basic structures of the waterfall model in software development as we currently 

know it were first introduced in 1956 by Herbert D. Benington [18], although not 

under the name of “waterfall”. It consisted of 9 phases, see appendix C for an 

overview [19].  

● In an article published by Winston W. Royce in 1970 this model of Benington was for 

the first time more formally documented into a methodology [20]. At that time the 

term “waterfall” was not used either. Important to note is that Royce explains that 

the typical downward flow of the waterfall method is flawed. Royce introduces 

iteration to this model. However, still at a quite modest level: “as a step progresses 

and the design is further detailed, there is an iteration with the preceding and 

succeeding steps but rarely with the more remote steps in the sequence.” 

● It appears that the first use of the term “waterfall” was in the 1976 paper by Bell and 

Thayer [21]. In this paper they refer to the top-down software development 

methodology of Royce and call this approach the “the waterfall of development 

activities” [21]. 

● In 1983 Herbert D. Benington, who initially introduced the waterfall concept, 

republished his article with a new foreword in which he explains that in his initial 

publication he did “omit a number of important approaches, which I will say a little 

more about below” [20].  Some of the additional approaches that he mentions are: 

o The application of a structured, highly disciplined engineering mindset for 

developers. 

o The waterfall top-down approach is not to be interpreted too literally: “This 

attitude can be terribly misleading and dangerous. To stretch an analogy 

slightly, it is like saying that we must specify the characteristics of a rocket 

engine before measuring the burning properties of liquid hydrogen” [20].  

o Experimental prototypes are important to develop and based on the result 

change the specifications. 

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Engineering_design
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Waterfall
https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_construction
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Software_maintenance


 

 

 

DevOps in Control – January 2026 

Page 9 van 49  

o The biggest mistake his team made: the attempt to make a too large release. 

He would now focus on smaller changes and test and evolve the system from 

there.  

Strangely enough, at that time the sequential / one-direction waterfall methodology was 

already embedded within the industry and his feedback did not result in changing the 

methodology (of which he was the founder).  

Key characteristics of the waterfall methodology [23]: 

- Run from a project organization (timely organization). 

- Rigid planning. 

- Sequential one-direction flow of activities. 

- Different and separated teams per phase. 

- Need for extensive documentation (because teams are working in separation). 

- Hand-over to normal IT operations department after project is delivered. 

In practice we see the waterfall methodology mostly being implemented with the assistance 

of the PRINCE2 project management framework. 

Figure 1 provides an overview of the waterfall phases which form a software development 

sequence (a “waterfall”). In some articles these phases appear with slightly different names. 

 

 

Figure 1: The waterfall model [23] 

2.2 Agile 

The Agile approach was introduced as the natural counterpart of the Waterfall methodology 

to resolve issues associated with the latter. Agile development does not apply a plan-driven 

approach but an iterative  approach. It is not defined as a methodology but as a set of 

principles to be applied together in order to achieve an intended goal. The 12 Agile 

development principles and their origin can be found in the Agile Manifesto [10]. The Agile 

Manifesto was defined to enable better ways for developing valuable software more rapidly 

(principle 1). 



 

 

 

DevOps in Control – January 2026 

Page 10 van 49  

In most literature Agile development is perceived as an evolution from several practices and 

alternative methodologies for software development designed in the 90’s. Examples of such 

practices are the Theory of Constraints [7]. Lean Manufacturing [8] and, very relevant to 

auditors, the famous Deming’s principles [16], which had already proven their effectiveness 

in the manufacturing and automotive industries [14].  

Key agile development characteristics according to van Casteren [23]: 

- Iterative development with frequent visible results as output (principle 3). 

- Focus on interaction and communication (principle 6). 

- Reduction of resource-intensive intermediate artifacts e.g. backlog vs formalized 

requirements document (principle 10). 

- Feature planning and prioritization performed in short iterative cycles (principle 3). 

- Fast decision making (principle 4). 

- Close customer relationships for timely assessment and feedback on increments 

(principle 4). 

Given the fact that the Agile development approach is not a methodology, there are currently 

many Agile development best practices available, which all share common characteristics but 

each having their own nuances and specializations. We can therefore consider “Agile” to 

constitute an umbrella term, which covers among others; Scrum, Kanban, Extreme 

Programming (XP), Crystal and Lean software development practices. In figure 2 below an 

overview is provided of Scrum for implementing agile principles. 

 

 

Figure 2 Scrum schematic overview [23] 

We still see the main phases of Waterfall in the Agile approach; however, they appear in a 

shorter and iterative fashion. Basically, each iteration is a self-contained mini project with 

activities that relate to the Waterfall phases.  



 

 

 

DevOps in Control – January 2026 

Page 11 van 49  

Tools & technology 

In order to achieve the desired agility, the use of suitable development tools, a high level of 

automation and a constant drive for technical excellence is a pre-requisite (principle 9). Effort 

is put on the practices to remove the barriers in collaboration more effectively together with 

stakeholder’s, while being able to welcome and respond to changes. The tools used for Agile 

development are typically limited to software development activities, the reason being that 

development and operations teams are still separated. Therefore, software development and 

software deployment/release (operations) are still managed by separate teams, using 

separate ways of working.  

Out of this focus on automation rose the Infrastructure as Code practice and the widespread 

use of Version Control Systems combined with automated builds (Continuous Integration) and 

automated deployments (Continuous delivery). These practices are closely related to Agile 

and almost always applied by Agile development teams. 

Version control 

A Version Control System (VCS) allows developers to work on code from different workstations 

at different locations (pull) while still being able to integrate their code into a single repository 

(merge), which can be used later to deploy the entire system. The VCS is also used to 

document and track system configuration files (see Infrastructure as Code). The consistent 

use of a VCS is considered the first step on the path to Continuous Integration (CI) and 

Continuous Delivery (CD); see below.  

Infrastructure as Code 

Infrastructure as Code (IaC) is the practice to manage and provision infrastructure through 

code and automation instead of manually (e.g. by logging in with SSH into a host and 

executing commands). IaC is for example used to create and change containers, instances, 

servers, and complete environments from already created scripts/templates. By maintaining 

these automation scripts in the VCS, a fast repeatable and auditable method is achieved for 

the creation and maintenance of infrastructure components based on best practices (e.g. 

security baselines). 

With IaC, several powerful software development practices have been adopted within the 

operations field such as use of VCS, peer review, automated testing, release tagging and 

release promotion [25]. The application of IaC also greatly enhanced the audit of the 

configuration management process for auditors.  



 

 

 

DevOps in Control – January 2026 

Page 12 van 49  

 

Figure 3 Infrastructure as code [38]  

2.3 DevOps 

Gradually Agile development expanded into other areas within IT of which primarily IT 

operations. This union of previously separated development and operations teams has been 

called DevOps and is basically the next step in the evolution of Agile to further increase rapid 

value delivery to the end customer by streamlining and automating the entire software 

delivery lifecycle. As such, DevOps is not a methodology nor an approach but a philosophy 

and a way or working to enable collaboration between previously separated 

teams/departments, using a high level of automation. To achieve this, several other 

methodologies are applied, some of which even outside the software development field (e.g. 

social psychological beliefs).The goal of DevOps is to reduce lead time in all the software 

delivery steps from months or weeks to minutes while maintaining control and consistency 

across all environments. This is only possible by applying a high degree of automation in the 

software delivery lifecycle which in DevOps terminology is called the Delivery pipeline. The 

focus of this automation lies in the integration of the end-to-end activities needed to 

transform a vision to a workable feature. Next to the high focus on automation of the 

complete pipeline, DevOps has an important prerequisite, namely the culture. It is explicitly 

emphasized that the cultivation of the right culture is critical to make previously separate 

teams working together. From all the years of applying Agile in software development, one 

important lesson learnt was that the human factor appeared to be a limiting factor in 

increasing the level of agility.  

Taking the above into account, we have formulated the following definition for DevOps: 

DevOps is the union of, at least, software development and IT operations activities in an 

environment that has incorporated the accompanying cultural and technical principles to 

deliver business value at a high frequency. 

If we look at the available literature, we see that the DevOps practice is summarized in three 

core principles which we see as supplementary principles to the Agile principles [1]:  

1. Flow: the Delivery pipeline facilitating automated build, testing, integration and 

deployment, to enable fast flow from business to development to operations 

combined with an emphasis of small changes over big releases. 



 

 

 

DevOps in Control – January 2026 

Page 13 van 49  

2. Feedback: functional monitoring to identify issues and communicate feedback fast to 

everyone involved. For example, Blue/Green deployment
1

, A/B testing
2

 and Canary 

releases
3

.  

3. Learning: the continual learning process from incidents (e.g. blameless post-

mortems
4

) and failures (e.g. chaos monkey
5

) and of as much actual users of the 

system by connecting technical experts with these actual users.  

Different categories of DevOps 

Because DevOps is not a formally defined and documented methodology – unlike frameworks 

such as PRINCE2 -, there are many types of DevOps implementations, and almost every 

DevOps team represents a unique approach. Due to the diversity of DevOps implementations, 

understanding DevOps typologies offers useful context for identifying and assessing 

associated risks. The DevOps Topologies organization presented 8 DevOps anti-types and 9 

DevOps collaboration types (ranging from an effectiveness level of low to high) to create 

awareness regarding the several different, most common ‘flavors’ of DevOps implementation 

[24]. For proper application of the control framework presented in paragraph 4.3, it is crucial 

to be aware of the model used by the team that is to be assessed.  

DevOps practices  

In Agile teams, automation (and subsequent improvement) of the software development 

process could already be enhanced by using VCS and IaC. With the application of DevOps 

practices, the automation evolved further into the concepts known as CI/CD which are shortly 

introduced below: 

● Continuous Integration (CI): Martin Fowler introduces the following definition for CI: 

“a development practice that requires developers to integrate code into a shared 

repository several times a day. Each check-in is then verified by an automated build, 

allowing teams to detect problems early” [26]. CI is an enhancement built upon the 

use of VCS. CI is often one of the drivers of Agile practices. 

● Continuous Delivery (CD): As an extension of CI and the next step in incremental 

software delivery, CD ensures that every version of the code in the CI repository that 

 

1
 A deployment technique that requires two identical production environments (blue and green) which can be used 

to deploy a new release to e.g. blue to gain feedback on the working of the release and after successful feedback 

switch the router to so send all incoming requests to blue (instead of green). There are several nuances and different 

approaches available regarding the use of this technique. 

2
 A/B testing is a way to compare two versions of a single variable, typically by testing a subject's response to variant 

A against variant B and determining which of the two variants is more effective. 

3
 Canary release is a technique to reduce the risk of introducing a new software version in production by slowly 

rolling out the change to a small subset of users before rolling it out to the entire infrastructure and making it 

available to everybody [45]. 

4
 A postmortem is a written record of an incident, its impact, the actions taken to mitigate or resolve it, the root 

cause(s), and the follow-up actions to prevent the incident from recurring. It is done with the focus on identifying the 

contributing causes of the incident without indicting any individual or team for bad or inappropriate behavior (source: 

Google).  

5
 A program that randomly chooses a server and disables it during its usual hours of activity. 



 

 

 

DevOps in Control – January 2026 

Page 14 van 49  

has been tested can be released at any moment. This is often referred to the concept 

of “maintaining code in a deployable state”. It is achieved through a set of practices 

and methodologies designed to improve the process of software delivery and ensure 

reliable software releases. Leveraging automation, from CI builds, to (security) testing, 

to deployment, CD involves all dimensions of the development and operations 

organization. Ultimately, it enables the systematic, repeatable, and more frequent 

release of quality software to end customers [27]. 

● Continuous Deployment: As an extension to Continuous Delivery (CD), Continuous 

Deployment focusses on executing the deployment to production automatically after 

every change. It is the set of practices to enable frequently deploying small code 

changes to production by removing all manual steps in the Delivery pipeline. If a 

deployment causes a problem, it is quickly and reliably rolled back using an automated 

process. Through this robust automation, rollbacks are a reliable way to ensure 

stability for customers and at the same time are convenient for the developers because 

they can roll forward with a fix as soon as they have one. 

 

 

Figure 4: Comparison of CI /CD, Continuous Deployment   

Tooling overview (Appendix D) 

In the previous two paragraphs several technological principles have been explained. There 

is an actively growing number of tools becoming available to achieve this level of automation. 

Xebia labs has created a ‘Periodic table of DevOps tools’ [42] to provide an overview of the 

most used tools for each of the phases in the delivery pipeline (see Appendix D). This overview 

is important as it gives the auditor insights in the level of automation applied in the Integration 

and Delivery pipeline which impacts the audit approach to be applied.  

Documentation 

The logical result of the high-level of automation in both Agile and DevOps teams generates 

off course a lot of source code versions. This source code has become the new (audit) 

documentation. With all steps and activities registered in the VCS and logging of all code 

changes, including what changed and by whom and when, there is no or less need to create 

several of the traditional formal documentation. However, environment setup instructions and 



 

 

 

DevOps in Control – January 2026 

Page 15 van 49  

diagrammatic representations of the architecture are useful for bringing other engineering 

team members up to speed on the system and sharing knowledge. The goal of the 

documentation has changed from being imperative to understand the environment to being 

informative for sharing purposes. 

The Shared Services organization 

Tooling and technology are important within DevOps to make the high level of automation 

possible. It is therefore often seen that teams have a lot of freedom in the selection, use and 

configuration of tools to gain experience on the best solutions. Research shows that when 

the DevOps teams and their practices start maturing, naturally the focus then shifts to 

normalization and standardization of the tools and services used within the organization [3]. 

This standardization is also fueled by the high degree of collaboration within the different 

(DevOps) teams within the organization. This increases the development of proven best 

practices. As a result, it is observed that gradually Shared Services teams are formed. These 

teams now take over the management of several of the tools and best practices used within 

the DevOps teams (for example the tools needed for the Integration and Delivery pipeline). 

Also, often DevOps teams make use of (public) cloud resources, the management of which 

now shifts towards the Shared Services team. This is confirmed in the State of DevOps report 

2018 in which is stated that DevOps teams report an enhancement in their delivery quality 

and a further gain of efficiency by acquiring tools and services form Shared Services teams 

[3]. As such a software delivery ‘ecosystem’ is created where more teams are part of the 

management of an application’s changes. The result is a longer ‘software chain of custody’. 

In the next chapter the impact on the audit is further elaborated. 

Test strategy 

In order to understand whether new software will work in production, developers need to run 

tests on their software in production-like environments which are nearly identical to the 

production environment, as any deviation in the test environment compared to the production 

environment increases the chance of running into problems later in the pipeline.  Following 

the principle of Agile to reduce the number of handoffs, it would be best if developers could 

create these production-like environments in a self-service manner. This is possible by using 

IaC practices.  

Automating testing allows speeding up the test process significantly compared to manual 

testing and is less time-consuming and less dependent on the quality of individual testers. By 

automating tests, developers can run (some of) the tests directly after having finished a code 

change. Not only can tests therefore be performed earlier in the development process, it also 

reduces the number of handoffs between testers and developers and acts as a tollgate during 

propagation of releases from development to test to production(like) environments.  

Some examples of tests to be executed, presented in the order of easiest to more difficult to 

automate are: 

● Unit Tests: testing a single method, class or function in isolation 

● Acceptance Tests: testing the application as a whole 

● Integration Tests: testing the correct interaction with other applications and services 

In addition, automated testing is also well-suited for testing several non-functional 

requirements, for example performance and security. Automating testing in most cases does 

however not mean that manual testing is completely removed from the testing process, but 



 

 

 

DevOps in Control – January 2026 

Page 16 van 49  

rather that it plays a smaller role in the overall testing process. Exploratory Testing and User 

Acceptance Testing often remain manual. For more details on a balanced test approach and 

division between automated and manual tests we refer the reader to the ‘Practical Test 

Pyramid’ article by Martin Fowler [11] and also figure 5 which is further build upon the 

‘Practical Test Pyramid’. 

 

Figure 5 The ideal test pyramid [43] 

 

From DevOps to DevSecOps: a natural evolution 

 

An addition to our initial study report is this chapter on DevSecOps. This is not without reason, 

because Cyber Security is high on the global agenda. A report from World Economic Forum 

(WEF) and S&P Global reveals that cybersecurity-related risk consistently ranks among the top 

global concerns. For example, the WEF’s ‘Global Risks Report 2024’ ranks ‘cyber insecurity’ 

as the fourth most severe risk in the short term. S&P Global states in their ‘Top Geopolitical 

Risks of 2025’ that “cyber-attacks are a growing geopolitical risk, becoming larger, more 

intricate, and more relentless.” International organizations such as the United Nations (UN) 

also emphasize the growing importance of cybersecurity in their thematic reports and global 

policy recommendations. 

 

Given the growing importance of cybersecurity, it’s only logical that DevSecOps has emerged 

as the next key step in the evolution of DevOps and, by extension, in our work as IT auditors 

and risk professionals. Security has always been part of DevOps; the difference now is that 

it’s taking on a far more prominent role. DevSecOps, short for development, security, and 

operations, represents an approach where security is not treated as a separate activity or a 

final step, but is instead woven into every phase of the DevOps software development 

lifecycle.  

 



 

 

 

DevOps in Control – January 2026 

Page 17 van 49  

Before we can fully appreciate the value DevSecOps brings, it helps to take a step back and 

consider what DevOps has already achieved. By breaking down barriers between development 

and operations, DevOps transformed how software is built and delivered with a strong focus 

on speed, collaboration, and reliability. But despite these improvements, security sometimes 

remained a separate track, addressed late in the process or even after deployment. Most 

auditors will be able to recall at least one situation, and likely several, where security was 

clearly treated as an afterthought. Perhaps it was a critical (software) vulnerability discovered 

only after go-live, hardcoded admin credentials identified during an audit, or a secrets file 

that had unintentionally been committed to a public repository. These kinds of findings are 

all too familiar in our field. They highlight the risks of sidelining security during development 

and reinforce the importance of a more integrated, security-by-design approach such as 

DevSecOps. 

 

DevSecOps builds upon the security foundation that should already be embedded within 

DevOps, reinforcing security as a shared responsibility throughout the entire development 

lifecycle and establishing it as a fundamental pillar. It does not replace DevOps but rather 

extends it. While DevOps emphasizes collaboration between development and operations and 

frequent delivery, DevSecOps introduces an additional dimension: security integration and 

secure delivery. The earlier characterization may seem overly simplistic, as security has always 

been part of DevOps. However, with DevSecOps, there is a much greater, more integrated, 

and above all shared responsibility for security, which is now recognized as not merely a 

technical matter but a cultural and organizational imperative. 

 

This difference becomes particularly evident when examining how testing is approached. In a 

typical DevOps setup, automated testing primarily targets functionality, quality, and 

performance, including unit tests, integration tests, and system-level checks. These remain 

essential. DevSecOps, which is already integrated in some DevOps environments, introduces 

an additional dimension by embedding security-focused tests directly into the pipeline. 

Examples include security testing, vulnerability scanning, and checks for exposed secrets, 

hardcoded credentials, and known misconfigurations. 

 

These practices help teams catch and address security risks early in the process, making 

security part of the build and delivery itself, not an afterthought or a compliance checkbox. 

This mindset also encourages a culture where security is everyone’s responsibility, embedded 

in the way DevSecOps teams work together. As described in chapter 2.2, Agile development 

is not just about tools and processes, it’s about adopting a mindset of continuous 

improvement and collaboration. DevSecOps builds on that foundation by making security a 

shared responsibility throughout the entire development lifecycle. 

 

For us as IT auditors and IT risk professionals, the evolution from DevOps to DevSecOps is, 

at its core, not a major technical transformation. Rather, it represents a shift in focus. Security 

is, and always has been, part of the (DevOps) software development process. What changes 

now is that it becomes more deeply integrated across all stages, proactive, and a shared 

responsibility. 

 



 

 

 

DevOps in Control – January 2026 

Page 18 van 49  

To summarize: 

 

1. Security is integrated, not isolated: DevSecOps embeds automated security checks 

directly into CI/CD pipelines. 

2. Security becomes proactive: Vulnerabilities are identified and addressed early, 

reducing both risk and remediation costs. 

3. It drives cultural change: Teams adopt a mindset where developers, testers, and 

operations all take ownership of security, not just the security team. 

 

DevSecOps is therefore not just a technical enhancement. It represents a natural evolution in 

how security is approached, implemented, and how it can be audited. 

 

To make this rather extensive introduction to DevSecOps more concrete within the context of 

NOREA's DevOps Control Framework, when reviewing the controls in the DevOps Control 

Framework, security appears in several testing-related controls. However, it is most explicitly 

and concretely addressed in Control 11, which focuses specifically on security testing. This 

includes key components such as threat modeling, vulnerability scanning, static code 

analysis, dependency checks, and penetration testing, each an essential part of the "Sec" in 

DevSecOps. 

It's important to note that not all teams are at the same stage in their security journey. Some 

may not yet need to be, depending on their context. The framework’s maturity levels reflect 

this variation well. Level 1 begins with basic security testing and follow-up, while Level 5 

involves continuous learning, evaluation, and iterative improvement of security testing 

practices. 

  



 

 

 

DevOps in Control – January 2026 

Page 19 van 49  

 

3. DevOps in control 

Based on our research and as introduced in the preceding paragraphs we advise a 3-step 

approach for auditing DevOps environments: 

1. Determining the software development methodology or principles being used 

2. Cultural maturity assessment  

3. Control assessment 

There are many software development methodologies, best practices and approaches. For 

most, if not all, traditional software development methodologies there are several control or 

compliance frameworks available. IT auditors are mostly familiar with the Waterfall software 

development methodology and therefore, most of the control frameworks used by IT auditors 

are Waterfall based. However, IT auditors currently face a misalignment between their control 

frameworks and the development practices used by the organizations. An increasing amount 

of organizations are using modern approaches such as Agile or DevOps or a mix between 

Waterfall and (parts of) Agile. We present in this chapter a combined audit approach for both 

Agile and DevOps. 

3.1 Determining the methodology being used 

There is a lot of confusion about the application of Agile and DevOps, because they are often 

claimed to be applied when adherence to their principles is only partly fulfilled. This is often 

the case when an organization is using a phased approach in the shift towards an Agile and 

DevOps way of working. When performing an audit under these circumstances, it is crucial to 

apply an appropriate control framework. We therefore advise the IT auditor to first determine 

which is currently the dominant approach being used and then apply the proper controls 

based on that methodology or practice. 

One of the core distinctions between the different practices is the delivery frequency (the 

speed in which changes are deployed in production). Because this metric provides the most 

accurate indication of the dominant software development approach, we apply this metric to 

determine the software development method being used. The table below provides an 

indication of the delivery frequencies that are typically associated with each approach. 

 



 

 

 

DevOps in Control – January 2026 

Page 20 van 49  

Delivery frequency Methodology/practice Description 

Quarterly or less Waterfall The software development is done in phased 

steps leading to large planned software 

releases. 

Monthly Agile (principles and 

procedures) 

The software development process follows an 

Agile approach, but deployments are still 

performed manually. 

(bi-)weekly Agile+ A CI/CD pipeline is implemented and used to 

deploy software to the production 

environment, but manual steps are still 

required. 

Daily or more DevOps /  

Continuous Deployment 

Every change that is accepted is automatically 

build, tested and delivered by the automated 

delivery pipeline and possibly also deployed to 

the production environment. 

Table 1: Guidance to determine software development method 

 

For more details on distinctions or best practices associated with the different approaches, 

see the State of DevOps report 2018 [3] and DevOps Topologies [24].  

3.2 Culture maturity assessment  

COBIT cautions that “Culture, ethics and behavior of individuals and of the enterprise are often 

underestimated as factors in the success of governance and management activities”. In the 

COBIT 2019 model we can see that culture, ethics and behavior is also one of seven 

components required for an effective governance system. Currently, COBIT is still the most 

used framework for IT auditors who use the complete, or tailored components of the model 

to assess the (IT) governance system of organizations. COBIT already confirms that to gain a 

complete insight in the working of the governance model at an organization, the IT auditor 

should include the assessment of the organizational culture into audit approach. 

The delivery frequency is the key indicator to determine the dominant methodology being 

used, because it is simply not possible to achieve the higher delivery frequencies without 

having implemented most of the DevOps technical principles. However, from our definition 

of DevOps in paragraph 2.3, it can be concluded that cultural principles play a key role in 

maintaining a sustainable DevOps team next to the technical principles [34].   

It appears that there is no common understanding about what culture is. In this guide, we 

choose the definition by Westrum. Westrum defines culture as that set of processes that 

shapes organizational response to the challenges and opportunities that organizations face 

[34]. Westrum explains that with ‘response’ he refers to the coherent patterns along which 

individuals and the team respond and these patterns refers not only to the action but also to 

the thoughts and emotions of the individuals [34]. Based on this definition, the culture of an 

organization can be seen as analogous to the personality of an individual. 

 

What makes a good (DevOps) culture? 



 

 

 

DevOps in Control – January 2026 

Page 21 van 49  

Google started project Aristotle with the goal to identify the aspects that make a team effective 

at Google. The project identified five factors that really mattered. In order of importance these 

are [35]: 

1. Psychological safety 

2. Dependability 

3. Structure & Clarity 

4. Meaning 

5. Impact 

The results of the project including guidance for improving each of above factors are 

published by Google [35]. 

Another model on culture can be derived from research performed by Westrum [34], which is 

also the model used in the State of DevOps studies. Westrum’ s model consists not on a set 

of factors or capabilities but contains a list of 6 questions. These questions may be slightly 

altered to fit a particular organizational context, but only minor changes should be applied 

[36]. Copyright restrictions prevent us from listing these questions in this study report; we 

refer the reader to Westrum’ s paper [36]. 

A third example is derived from ISACA who has also published a list of the most important 

factors to make DevOps teams successful [37]. These are: 

● Trust 

● Transparency  

● Accountability 

● Communication 

● Mutual recognition 

● Ability to learn from peers 

● Ability to teach team members 

● Cultural awareness 

How to perform a culture assessment 

Both Google’s project Aristotle and Westrum’ s research conclude that an organizational 

culture is a perceptual measure, which is hard to describe and therefore best captured using 

survey methods. Example of survey statements of Google based on the five factors are: 

● Psychological safety - “If I make a mistake on our team, it is not held against me.” 

● Dependability - “When my teammates say they’ll do something, they follow through 

with it.” 



 

 

 

DevOps in Control – January 2026 

Page 22 van 49  

● Structure and Clarity - “Our team has an effective decision-making process.” 

● Meaning - “The work I do for our team is meaningful to me.” 

● Impact - “I understand how our team’s work contributes to the organization's goals.” 

The development of a culture assessment model is not part of this study report, but we refer 

the reader to appropriate assessment tools that are already available for DevOps. Examples 

of tools available: 

● The DORA assessment tool [12], specifically the Capabilities part that focuses on the 

cultural readiness. This model is partly based on the Westrum model. 

● The Microsoft DevOps assessment tool [13], specifically the Culture section. 

It is recommended assessing the cultural maturity of the team (as required for a successful 

implementation of DevOps) during the audit, in order to be able to formulate, together with 

the assessment of the technical controls, a more justifiable audit conclusion. 

3.3 Control assessment  

The heart of DevOps is the Delivery pipeline that integrates the Build, Test and Delivery phases 

of the software development process. It consists of a dedicated implementation stream per 

application, based on tooling for version control, build automation, provisioning, 

configuration management and deployment. In figure 5 an example of the Delivery pipeline 

of a DevOps team is visualized [44]. The numbered controls of the control framework 

presented in paragraph 3.4 have been inserted in this figure to provide better insight on the 

‘location’ of these controls within the Delivery pipeline. 

 

 



 

 

 

DevOps in Control – January 2026 

Page 23 van 49  

Figure 6: Example of a Delivery pipeline at Schuberg Philis [44] 

IT General Controls (ITGC) 

There are five domains of ITGC controls identified as the essential areas of the IT “space” that 

should be examined, even if only briefly, by the auditor as areas of IT that potentially 

introduce risk to the financial statements i.e., the risk of material misstatement (RMM) [22]. 

There is no common ITGC framework available, however auditing literature such as the 

Statements on Auditing Standards (SAS) No. 104-111 has summarized the need for these five 

domains to be considered [29]. ISACA publishes leading best practices and frameworks for 

information services and has developed a guideline which includes the minimum five ITGC 

domains and controls [22]. This overview of ISACA is presented in table 2, which includes 

their mapping to the COBIT 4.1 framework. In the table a new column has been added to 

include the references to newest COBIT release (COBIT 2019). 

For applications within the scope of the IT audit that are managed by DevOps teams, the 

controls primarily affected are those within the Change Management domain, although other 

domains (e.g., Information Security) may also be impacted. While the control objectives 

themselves remain unchanged, the implementation of controls—and consequently the testing 

approach—differs in a DevOps context. This has been confirmed by ISACA in the COBIT 2019 

Framework (see paragraph 1.2).  

This study report presents a control framework for auditing DevOps environments – specific 

Change Management - in paragraph 3.4. It is recommended that auditors assess the controls 

outlined in this framework instead of the traditional controls within the Change Management 

domain. The remaining controls presented in Table 2 remain applicable and should be 

assessed in accordance with standard audit procedures. 

In paragraph 2.3 we introduced the Shared Services teams which are often found in more 

mature DevOps organizations [3]. When assessing an IT environment in which the use of 

Shared Services teams is made, it is expected that the ITGC controls will need to be assessed 

for these Shared Services teams as well, because the management of these tools has a direct 

impact on (the integrity of) the application environment maintained by the Agile and DevOps 

teams. Furthermore, if the Shared Services teams also operate based on Agile and DevOps 

principles, we also suggest the auditor to assess the Change management domain based on 

the Agile and DevOps controls presented in in paragraph 3.4.  

 

Domain Controls COBIT 4.1 reference  COBIT 2019 reference 

IT entity-level 

controls 

IT governance 

IT operations management 

 

PO domain (PO01-10) 

DS1 Define and 

manage service levels 

DS3 Manage 

performance and 

capacity 

DS6 Identify and 

allocate costs 

DS7 Educate and train 

users 

DS8 Manage service 

desk and incidents 

APO domain (APO01-

APO014) 

DSS01 Managed 

operations 

DSS02 Managed service 

requests and incidents 

DSS03 Managed 

problems 

MEA domain (MEA01-

MEA04) 

 



 

 

 

DevOps in Control – January 2026 

Page 24 van 49  

Domain Controls COBIT 4.1 reference  COBIT 2019 reference 

DS9 Manage the 

configuration 

DS10 Manage 

problems 

DS11 Manage data 

DS12 Manage the 

physical environment 

DS13 Manage 

operations 

ME domain (ME1-4) 

Change 

management 

Changes to 

software/programs 

Changes to infrastructure 

AI domain (AI1-7) BAI domain (BAI01-

BAI11) 

Information 

security 

Physical and environmental 

controls 

Logical access controls 

DS5 Ensure systems 

security 

DSS05 Managed security 

services 

Backup and 

recovery 
Backup of data 

Business continuity planning 

(BCP) 

Disaster recovery planning 

(DRP) 

DS4 Ensure 

continuous service 

DSS Managed continuity 

Third-party IT 

providers 
Outsourced IT 

Vendor management 

ISAE 3402 audits 

DS2 Manage third-

party services 

APO10 Managed vendors 

Table 2: ITGC areas according to ISACA [22] 

The concept of Shared Services teams in relation to Agile and DevOps teams is referred to by 

Gartner as shifting ‘Up the stack’ [30] since the Agile and DevOps teams managing the 

business applications are more and more only operating on the upper half domain of the IT 

stack. The lower half is ‘outsourced’ to Shared Services teams [3] [30]. As stated in the State 

of DevOps report, this results in normalization and standardization of the stack and use of 

best practices, which is imperative for the further maturation of DevOps within the 

organization [3].  

 



 

 

 

DevOps in Control – January 2026 

Page 25 van 49  

 

Figure 7: IT stack divided between DevOps and Shared Services teams [30] 

 

Testing approach (system-driven versus sample-based) 

From audit guidelines such as those from the American Institute of Public Accountants 

(AICPA), we can determine that there are five types of test procedures that can be applied 

during the IT audit. These test procedures need to be applied to be able to form an opinion 

on the suitability of the design and the operating effectiveness of controls during the period 

under review. The AICPA guidelines also state that the controls need to be tested by applying 

a variety of testing procedures. These five test procedures are (in order of complexity from 

lowest to highest): 

1. Inquiry: based on interviews with appropriate management and staff about the 

controls. 

2. Observation: observation of the presence of the control (e.g. a physical control such 

as a security camera). 

3. Inspection of evidence: collection and review of documentation based on a sample 

size. If, during testing, the auditor encounters an error the sample, they can expand 

the sample size and conduct further testing or perform additional tests.  

4. Reperformance: the auditor manually reperforms/executes the control to validate the 

output of e.g. an automated system generated calculation or in case of an 

automated control the inspection of just one event would be completed. 

5. Computer Assisted Audit Technique (CAAT): method to analyze large volumes of 

data or all transactions or events executed instead of a sample size often performed 

with the use of software. 

The use of Inquiry should be combined with other test procedures, specifically Observation, 

Inspection or Reperformance. The ideal test approach is testing the controls as automated 

controls based on the Reperformance test procedure, because then it is sufficient to test one 

event only instead of a sample consisting of multiple events. This approach is more effective 



 

 

 

DevOps in Control – January 2026 

Page 26 van 49  

because it provides assurance that all events are properly executed according to the control 

objective and also more efficient because it requires less effort to test. 

In the preceding paragraphs several concepts have been introduced. The most important 

concepts from an audit point of view are:  

● Application of a VCS (Version Control System) 

● Application of IaC (Infrastructure as Code) 

● Application of CI (Continuous Integration) principles  

● Application of CD (Continuous Delivery) principles 

● Application of Continuous Deployment principles  

● Management of (Delivery pipeline) tools based on standardized best practices by 

Shared Services teams (shifting ‘Up the stack’) 

Depending on team maturity, a subset of these concepts or all of them may be applied by 

Agile and DevOps teams. The more concepts are applied, the higher level of automation will 

be achieved by the team. The implementation of these concepts is not possible without 

appropriate tooling (e.g., Continuous Delivery requires a CD tool) [23]. High level of 

automation in the Delivery pipeline and automation of the controls makes it possible for the 

auditor to justify the application of a system-driven audit approach, which is the most efficient 

and effective approach because the testing of one event only is required (Reperformance). 

Some examples of controls where testing one event (Reperformance) can be performed are: 

● reviewing the peer-review process (pull and merge request performed by two 

different team members) system parameters of the tested system by tracing through 

one transaction. 

● reviewing the query or code of the underlying peer-review check.  

There are several pre-requisites that must be fulfilled for applying a system-driven audit 

approach. These are: 

● Effectiveness of the ITGC controls of the environment in which the automated 

controls run (e.g., access and change management controls). 

● Completeness and accuracy of all changes that directly or indirectly impact the 

configuration settings of the automated controls and their proper assessment and 

approval. 

Challenges with the application of a system-driven test approach in Agile and DevOps 

environments 

In paragraph 3.2, it has already been stated that Agile and DevOps are not fixed 

methodologies, but a way of working based on a set of common principles aimed at 

continuously improving the value, quality and speed of the delivery pipeline. Also, one of the 

fundamental principles is the ambition to keep improving (principles 9 and 12). This implies 

that a team will start as it sees fit (and considers achievable) and over time will gradually 

progress and increase the level of automation/use of practices. However, in order to apply a 

system-driven audit approach the level of automation should be relatively consistent 



 

 

 

DevOps in Control – January 2026 

Page 27 van 49  

throughout the year and should include all the key controls. Unfortunately, this maturity stage 

has not yet been achieved by most Agile and DevOps teams. The State of DevOps survey 

results show that only 11% of respondents report a highly mature DevOps practice [3].  

Another challenge to be addressed is that in most Agile and DevOps teams, team members 

have access to the configuration settings of the Delivery pipeline tools being used. 

Assessment of these access rights is part of the ITGC control assessment performed by the 

auditor, because establishing appropriate access rights is a pre-requisite for reliance on 

automated controls. If team members can change Delivery pipeline tool configuration settings 

at will, it is most likely that ITGC controls regarding access rights and proper segregation of 

duties will not be complied with, and that the prerequisites for reliance on a system-driven 

audit approach will not be met. Establishing Shared Services teams will help in achieving this 

prerequisite, because the management of configuration settings is then shifted from 

development team members towards the Shared Services teams.  

It is also observed that, possibly due to the principles for constant improvement (principles 9 

and 12), team members prefer access to the configuration settings of the Delivery pipeline 

tools, in order to experiment with different settings to find the most effective and efficient 

ones. Another important reason for team members to have access to certain features is that 

in emergency change procedures it is technically required to be able to change settings in the 

pipeline or override version control enforced protection. In the State of DevOps survey results 

it is confirmed that teams often start/stop several practices along the way [3] and that a stable 

practice is only observed in the most mature teams [3].  

Introducing the FEAT-approach for control assessment 

The control framework developed in this study report is applicable for Agile, DevOps and 

various hybrid combinations that are in common use. However, it is imperative that the IT 

auditor determines whether a specific control qualifies as an automated control or (partly) 

depends on manual activities (see prerequisites in preceding paragraph). By knowing the 

stage of application of the key principles and tools within the development team, the auditor 

can tailor the control framework towards his use. In the last column of the control framework 

we have indicated which controls have the potential to be tested based on a system-driven 

test approach (qualified automated controls). As can be seen, most of the controls have that 

potential but as explained in the paragraph above, it is unlikely for most teams to achieve a 

sufficient level of maturity to make this possible.  

An alternative to sample-based testing is the Full population & Exception Analysis Testing 

(FEAT) method [46]. As the name indicates, this method is based on full population testing 

instead of sample-based testing. This method is suggested for use until the prerequisites for 

automated controls to enable a system-driven audit approach are met.  

The FEAT method consists of the following steps: 

1. Define a risk-based overview of the key controls present within the delivery pipeline. 

2. Create reliable population overviews of all events related to the key controls based 

on complete and accurate population lists. 

3. Define success/fail control logic for the control (e.g. merge requests are performed 

by a different team member). 

4. Automate testing of the control logic and execute the test on the full population.  



 

 

 

DevOps in Control – January 2026 

Page 28 van 49  

5. If exceptions are reported, perform an analysis of all exceptions. 

6. Provide an overall conclusion based on performed analysis (e.g. 

effective/ineffective). 

This approach provides a high level of transparency on the key controls within the Delivery 

pipeline. Creating transparency is seen as the main driver to achieve trust which is often still 

perceived as low regarding Agile and DevOps. The importance of trust is also confirmed and 

further elaborated upon in the ‘Building digital trust’ report by PwC [32]. Within teams, trust 

has been associated with improvements in communication, teamwork and superior levels of 

team performance [33]. Also, Patrick Lencioni states that one of the core contributors to a 

team's inability to achieve goals is due to lack of trust. He introduced the 5 Dysfunctions of a 

Team model of which the most important dysfunction is called ‘Absence of Trust’ [31].   

The application of the FEAT model can significantly help in reducing the lack of trust by: 

● Providing 100% insight in the effectiveness of key controls (through full population 

testing) 

● Providing insight in the remaining risks (through the exception analysis)  

If control failures are identified, it is expected that teams will improve their control 

performance levels (in line with the continuous improvement Agile principle 9 and 12) and by 

doing so, increase the level of confidence put in their software delivery processes. The 

maturity levels provided can guide the organization in defining the improvements needed. 

 

 

Figure  8: Summary of the FEAT method



 

 

 

DevOps in Control – January 2026 

Page 29 van 49  

3.4 The DevOps control framework 

 

Version control 

 

Version Changes Date 

V1.0 Initial version 1-9-2019 

V2.0 Improved Control description (column C) Control 

Assessment (column D) for all controls 

Merging related controls  

Addition of maturity levels for all controls 

1-1-2026 

 

License NOREA DevOps Framework 

The NOREA DevOps in Control Framework is licensed under a creative Commons BY 4.0. For more information: 

https://creativecommons.org/licenses/by/4.0/ 

 

You are free to: 

• Share — copy and redistribute the material in any medium or format 

• Adapt — remix, transform, and build upon the material for any purpose, even commercially 

 

The licensor cannot revoke these freedoms as long as you follow the license terms. 

 

Under the following terms: 

• Attribution - You must give appropriate credit , provide a link to the license, and indicate if changes were made .  

• You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. 

 

Feedback & questions 

Feedback and questions can be sent to: 

 

­ Sandeep Gangaram Panday (chair) - sandeep@brightlyn.nl   

­ Edwin Galama - E.Galama@cjib.nl 

­ Pieter Jolen - p.jolen@vanlanschotkempen.com  

­ Zubair Yaseen - Zubair.Yaseen@abnamroclearing.com  



 

 

 

DevOps in Control – January 2026 

Page 30 van 49  

­ Jean-Jacques Bistervels - jean-jacques.bistervels@bovemij.nl  

­ Than Son Nguijen -  ttsonnguijen@gmail.com  

­ Paul van Kemenade - Paul.van.Kemenade@rabobank.nl  

­ Boris Cuijpers - Boris.Cuijpers@rabobank.nl 

 

 

Link to Excel version 

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development     

 

How to use the framework 

In line with best practices for internal control, it is recommended to conduct a risk analysis prior to selecting controls. This analysis clarifies which risks are 

relevant within the context of Agile/DevOps and forms the basis for defining concrete control objectives. Based on these objectives, appropriate control 

measures and test criteria from our framework can then be selected.   

 

In addition, it is important to explicitly address organizational preconditions and policy aspects. Examples include: 

• Ensuring well-functioning Scrum teams by focusing on desired behavior, knowledge, and competencies. 

• Establishing policies and descriptions regarding access and authorization for the tooling used. 

• Documenting working methods for Scrum/DevOps teams, including rules and agreements about the CD pipeline. 

• Defining procedures and controls (segregation of duties) for OTAP environments within the CD pipeline. 

• Including the CD pipeline and tooling in the CMDB for version, license, and configuration management. 

• Creating test policies with quality requirements for different test types (integration, user acceptance, etc.), including logging, review, and approval. 

• Specifying requirements, tooling, and test environments for integration and user acceptance tests, and recording results and approvals in VCS or 

alternatives. 

• Making arrangements for vulnerability scans, security scans, and penetration tests on tooling, including prioritization, logging, and follow-up. 

• Performing monitoring scans (e.g., via SIEM) on logging from the CD pipeline, focused on specific risks and compliance requirements. 

 

These organizational measures are essential for effective control and serve as preconditions for the successful application of the control framework.  

 

 

 

 

 

 

https://www.norea.nl/organisatie/kennis-en-werkgroepen/kennisgroep-software-development


 

 

 

DevOps in Control – January 2026 

Page 31 van 49  

Maturity model 

The NOREA DevOps framework introduces maturity levels for each control to help organizations assess their current position. Each level provides criteria and 

practical examples to determine where an organization stands and the actions required to advance. These maturity levels are based on the DNB Maturity 

Model as described in the DNB Good Practices for Information Security
6

. 

  

 
6 https://www.dnb.nl/media/vskni24i/good-practice-ib-2023.pdf  

https://www.dnb.nl/media/vskni24i/good-practice-ib-2023.pdf


 

 

 

DevOps in Control – January 2026 

Page 32 van 49  

 

 

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

1 Prepare The team has selected and formally 

documented an Agile methodology 

(e.g., Scrum, Extreme Programming, 

SAFe) to guide its planning, 

requirements analysis, and delivery 

processes including the relevant 

guardrails for compliance, quality 

and security. 

 

Roles and responsibilities are 

defined and assigned in accordance 

with the chosen methodology, and 

backlog items (covering both 

functional and non-functional 

requirements) are continuously 

refined, prioritized, and managed 

with input from all relevant 

stakeholders. 

 

 

  

1. The team has selected a 

suitable Agile methodology 

aligned with organizational 

requirements and this 

methodology, including any 

required guardrails (e.g., for 

compliance, quality, or 

security), is formally 

documented and accessible 

to all team members. 

 

2.   Based on the selected 

Agile methodology roles 

and responsibilities such as 

Product Owner, Scrum 

Master, team members, and 

relevant operational or 

security roles are assigned 

and documented. Verify 

that, based on described 

roles and responsibilities 

“Definition of Ready” and 

“Definition of Done” are 

clearly established, 

documented and applied for 

all backlog items, reflecting 

the needs and input of all 

relevant parties. 

 

3. Ensure that processes 

exist and are followed for 

capturing, refining, 

prioritizing, and managing 

both functional and non-

functional (e.g., security, 

compliance, operational) 

requirements in the 

backlog, with input from all 

relevant stakeholders 

including operations and 

security. 

 

4. Confirm that there is 

ongoing involvement of 

business, development, 

operations, and security 

stakeholders in backlog 

grooming and 

sprint/release planning, and 

that feedback from past 

iterations and production 

operations is used to 

continuously improve 

planning and delivery 

processes. 

BAI02.01 Define and 

maintain business 

functional and 

technical 

requirements 

BAI03.09 Manage 

(changes to) 

requirements 

BAI03.12 Design 

solutions based on 

the defined 

development 

methodology 

1. Informal (use) of Agile-

development 

methodology. The 

organization is familiar 

with the Agile approach. 

 

2. Product owners have 

informal role, in most 

case regular 

management function 

fulfils this role.  

Documentation as DoR / 

DoD used ad hoc, in 

informal way. 

 

3. Stakeholders 

requirements are partly 

considered in a informal 

way 

 

4. Backlog management, 

user stories, DoD and 

continuous prioritization 

are not used yet, but 

could be implemented. 

Only a list of work to do 

exists 

1. An informal Agile 

Methodology is available. 

 

2. Informal role of 

Product owner and team 

roles exist. Dod is partly 

used. 

 

3. Stakeholders 

requirements are 

considered in a informal 

way 

 

4. Backlog, user stories, 

DoD and continuous 

prioritization by de 

Product owner is 

informally used 

1.   DevOps teams have 

selected and implemented a 

suitable Agile methodology 

which is properly approved and 

documented. 

 

2. Product owners and teams 

are assigned and responsible 

for selected (business) services 

and/or products. The Product 

Owner is responsible for risk 

management tasks. Requests 

for functional or non-functional 

requirements are initiated by 

business stakeholders 

(customers) are reviewed and 

documented. The Definition of 

Ready is defined. 

 

3.   Stakeholder requirements 

and acceptance criteria, are 

considered, captured, 

prioritized and recorded before  

implementation. 

 

4.   Use of backlog system/tool.  

Backlog items are categorized, 

prioritized and reviewed by 

Product Owner. Definition of 

Done is determined. 

1. the use of the selected 

Agile-Methodology is 

measured 

 

2. The Product owner and 

team functioning is 

measured and reported. 

 

3. Stakeholders 

requirements are evaluated 

in a dedicated session and 

systematic way (including 

client/stakeholder). 

 

4. Backlog, user stories, DoD 

and continuous 

prioritization by de Product 

owner conform de Agile 

Methodology is applicable 

and evaluated in the 

retrospective 

1. The usage of the Agile 

Methodology is systematically 

evaluated and improvements 

are documented and 

monitored closely.  

 

2. The product owner and 

team functioning is improved 

based on the periodical 

evaluation (by HR and 

management).  

 

3. Improvements stemming 

from the stakeholder 

evaluation session are 

systematically followed-up, 

prioritized and included on 

the backlog. 

 

4. Quality of the backlog, user 

stories, DoD and prioritization 

by the Product owner is 

evaluated continuously; 

improvements identified are 

followed up accordingly. 

2 Prepare Develop and document designs (incl. 

architectural diagrams) for the 

1.Based on the service 

portfolio and the activities 

BAI03.01 Design high-

level solutions 

1. Designs are not 

available. 

1. Designs are 

incidentally available, but 

1.   Based on the service 

portfolio and the activities on 

1. Designs are formalized 

and available and 

1. Designs are formalized and 

available and evaluated in the 



 

 

 

DevOps in Control – January 2026 

Page 33 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

solutions in terms of technology, 

business processes and workflows. 

 

Ensure alignment with the IT 

strategy and enterprise architecture. 

Reassess and update the designs 

when significant changes occur 

during detailed design or building 

phases, or as the solutions evolve.  

 

Stakeholders actively participate in 

the designs and version updates are 

agreed/approved based on chosen 

agile methodology. 

on which team members are 

working identify whether for 

the solutions in scope 

designs are available 

(including architectural 

diagrams). The level of 

detail maintained should be 

in line with the development 

method selected and 

appropriate for the solution. 

 

2. Validate if all relevant 

roles are providing input on 

the designs while ensuring 

proper stakeholders are 

involved. 

 

3. Ensure that the 

supporting (IT) systems for 

the solution development 

are properly documented 

(including the respective 

flow/interaction between 

the systems) throughout or 

after completion of the 

solution. Changes to e.g. 

the build street need to be 

documented including 

keeping usable logs of 

support systems/methods 

that are not used anymore. 

 

2. Unsure whether all 

relevant roles are 

providing input 

3. Supporting IT systems 

(e.g. CD-pipeline/Tools 

etc.) is not documented 

or partly concept-

documented. 

not structurally and as 

part of a formal 

approach. 

 

2. All relevant roles are 

informally requested to 

provide input for 

designs.  

 

3. Supporting IT systems 

(e.g. CD-pipeline/Tools 

etc.) are informally used 

to support design 

activities. 

which team members are 

working identify whether for 

the solutions in scope designs 

are available. The level of detail 

maintained should be in line 

with the development method 

selected and appropriate for 

the solution. 

 

2.   All relevant roles are 

identified and provide input for 

the designs while ensuring 

proper stakeholders are 

involved for appraisal and 

approval. 

 

3.   Supporting (IT) systems for 

the solution development are 

properly documented (including 

the respective flow/interaction 

between the systems) 

throughout or after completion 

of the solution. Changes to e.g. 

the build street are 

documented, including keeping 

usable logs of support 

systems/methods that are not 

used anymore. 

compliance is measured in 

the retrospectives 

 

2. Input from involved roles 

and stakeholders is tracked 

and measured. Approval and 

decline frequencies by 

stakeholders are recorded. 

 

3. The overview of 

supporting IT systems (e.g. 

CD-pipeline/Tools etc.) is 

documented and its use 

measured by the owners 

(e.g. after each sprint). 

retrospectives. Improvements 

are sought and implemented. 

 

2. The list of relevant roles is 

evaluated periodically. 

Improvements are sought and 

implemented based on input 

and approval/decline figures. 

 

3. The overview of supporting 

IT systems (e.g. CD-

pipeline/Tools etc.) is 

documented and evaluated by 

the owners periodically (e.g. 

after each sprint). 

Improvements are sought and 

implemented. 

3 Prepare Procure solution components 

(applicable to the CI/CD pipeline) in 

accordance with requirements, 

detailed designs, architecture 

principles and the 

enterprise’s overall procurement 

policies and procedures (considering 

security/privacy and compliance 

requirements).  

 

A periodic review of procured 

solutions is conducted to ensure 

that newly added features (such as 

generative AI features) still meet the 

enterprise's policies. 

1. Identify company 

procurement procedures 

and requirements (including 

security, privacy and 

compliance) against which 

the candidate solutions are 

assessed. 

 

2. Validate whether 

stakeholders are involved in 

the procurement process 

and whether the procured 

software complies with 

company requirements. 

 

3. Validate if an overview is 

available of all external 

tools/software used 

(including open source) and 

match this with the 

acquisitions in an asset 

inventory.  

 

4. Extend the (software) 

asset inventory with a SBoM 

(Software Bill of Materials) 

to ensure that per 

tool/application a complete 

list is available of the 

components, libraries and 

BAI03.04 Procure 

solution components 

1. Procurement 

procedures and 

requirements are not set 

up formally or not known 

 

2. Stakeholders are 

involved on an ad hoc 

basis 

 

3. An overview of 

external tools/software is 

not available 

1. Procurement 

procedures and 

requirements generally 

known but not 

documented. 

 

2. Stakeholders are 

identified and involved, 

however not 

documented. 

 

3. An overview of 

external tools/software is 

available and matched 

with the asset inventory 

(e.g., CMDB) on ad hoc 

basis. 

1. Candidate solutions are 

assessed against company 

procurement procedures and 

requirements (including 

security, privacy and 

compliance) 

 

2. Stakeholders are involved in 

the procurement process and 

the procured software complies 

with company requirements. 

 

3. An overview is available of all 

external tools/software used 

and matched with the 

acquisitions in an asset 

inventory. A periodic review of 

the tools in the asset inventory 

is performed and follow-up of 

actions is performed.  

 

4. The asset inventory is 

extended with a SBoM.  

1. The adequacy of the 

company procurement 

procedures and 

requirements (including 

security, privacy and 

compliance) and the 

effectiveness of the 

assessment is periodically 

measured and reviewed. 

 

2. The list of stakeholders is 

verified for accuracy 

periodically. Whether the 

procured software complies 

with company requirements 

is validated periodically. 

 

3. The coverage of external 

tooling and its suitability are 

measured.  Reporting on 

periodic review and 

outstanding actions is 

available. 

 

4. Periodic measurements 

are performed to assess 

completeness of the SBoM. 

1. The effectiveness of the 

company procurement 

procedures and requirements 

(including security, privacy 

and compliance) and the 

assessment of candidate 

solutions are continuously 

evaluated and improved 

 

2. The effectiveness of the 

procurement process is 

continuously evaluated and 

improved 

 

3. Improvements for the use 

of external tooling are actively 

identified through market 

surveys or other means. Large 

releases are automatically 

identified and reported for 

timely follow-up for review 

against the enterprise's 

policies.  

 

4. Tooling is used to maintain 

a complete and automated 

SBoM  



 

 

 

DevOps in Control – January 2026 

Page 34 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

frameworks used within the 

tool/application. In case of 

acquired software this can 

be requested from the 

supplier.  

4 Develop A central version control solution is 

used for  all software artifacts, 

including application code, 

infrastructure code and test scripts 

to automate version management 

and ensure traceability across 

repositories. 

1. Validate that a central 

Version Control System 

(VCS) is implemented for all 

relevant software artifacts, 

including application code, 

infrastructure code, and test 

scripts. Confirm that the 

VCS is properly configured 

to support secure, auditable 

version management. 

 

2. Validate that all code and 

script changes are logged 

within the VCS, capturing at 

least: who made the 

change, what code was 

changed, when the change 

was made, reviewer 

comments (if applicable). 

Ensure that change history 

and log data are retained 

for a period defined by 

organizational policy and 

compliance requirements. 

 

3. Validate that access rules 

are defined and enforced 

for the repositories, 

pipelines, and testing tools. 

Test that only authorized 

users can modify repository 

settings or access sensitive 

functionalities. 

 

4. Validate that a clear 

branch policy is defined, 

such as requiring feature 

branches and enforcing 

peer review (the 4-eyes 

principle). 

Confirm that this policy is 

actively followed and 

enforced by the 

configuration of the VCS or 

supporting tools. 

 

5. Ensure that exceptions to 

version control or access 

rules (if any) are 

documented, justified, and 

subject to formal review and 

acceptance by the relevant 

authority (such as the 

product owner). 

BAI03.03 Develop 

solution components 

1. A formal version 

control is not 

implemented 

 

2. Code changes are not 

logged or logged ad hoc 

 

3. Specific access rules 

are not formalized 

 

4. The branch policy has 

not been defined 

1. A version control 

system has been 

implemented with the 

proper configuration 

settings 

 

2. Code changes are 

logged and the log data 

is maintained. 

 

3. Access rules have 

been defined and 

properly implemented 

  

4. A Branch policy has 

been defined and is 

followed 

1. A version control system has 

been implemented with the 

formalized proper configuration 

settings 

 

2. Code changes are logged 

and the log is retained in line 

with formal policies 

 

3. Access rules have been 

defined and are properly 

implemented.  

 

4. A Branch policy has been 

defined, is followed and 

verified. 

The effectiveness of the 

measures under maturity 

level 2 are reviewed 

periodically 

1. The configuration settings 

of the version control 

system are periodically 

reviewed. Metrics are used 

to measure compliance with 

a defined settings baseline. 

 

2. Metrics for code changes 

have been set and are 

actively measured and 

reported. 

 

3. Access rules have been 

defined, properly 

implemented and are 

reviewed periodically. 

Metrics are used to measure 

compliance with the policy. 

 

4. A Branch policy has been 

defined, is followed and 

verified periodically. Metrics 

are used to measure 

compliance with the policy. 

The measures under maturity 

level 2 are continuously 

evaluated and improved. 

1. The configuration settings 

of the version control system 

are continuously evaluated 

and improved. 

 

2. Code changes are verified 

and possibilities for 

improvement identified. 

 

3. Access rules have been 

defined, properly 

implemented and are 

reviewed periodically and 

reviewed for improvements 

 

4. A Branch policy has been 

defined, is followed and 

verified periodically for 

improvements 

 

5. Rules for the storing and 

processing of sensitive 

information are made. A scan 

is performed periodically to 

uncover sensitive information. 

Possible improvements for 

storing sensitive information 

are actively identified and 

reported. 

5 Develop Develop solution components 

incrementally within isolated, secure 

1. Verify that a documented 

coding standard addressing 

BAI03.03 Develop 

solution components 

1. At best, an informal 

coding standard with 

1. Basic coding principles 

with clear guidelines are 

1. A coding standard is 

available and implemented and 

1. A coding standard is 

available and implemented. 

1. A coding standard is 

available and implemented. 



 

 

 

DevOps in Control – January 2026 

Page 35 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

development environments that 

comply with company standards and 

security policies. 

 

Develop solution components 

progressively in a separate, secure 

environment, in accordance with 

company standards. 

language, style, and secure 

development practices 

exists and is accessible to 

the team. Confirm that code 

is automatically checked for 

adherence using tools such 

as linters or static code 

analyzers, and that 

identified violations are 

remediated. 

 

2. Ensure that secure coding 

policies and guidelines are 

implemented and actively 

enforced via integrated 

development tools (e.g., 

linters, static analysis tools). 

Confirm that any policy 

violations are tracked and 

resolved before code 

advancement. 

 

3. Validate that the 

selection and use of 

external software 

components, including 

libraries and frameworks, 

follows established 

guidelines covering security, 

support, and licensing. 

Check that decisions 

regarding component 

selection are documented 

for traceability.  

 

4. Ensure that processes are 

in place to prevent the 

inclusion of unencrypted 

sensitive information (such 

as passwords, access keys, 

and secrets) in source code 

repositories. Where 

possible, automated scans 

are performed to detect any 

secrets or sensitive data in 

the codebase and such 

findings are promptly 

remediated.  

guidelines is in place but 

ad-hoc used. Coding is 

done according to 

insights and experience 

of development staff. 

 

2. Limited use of (secure) 

coding policies and 

coding tools/framework. 

 

3. Limited guidelines in 

place for selection of 

external software 

components and this is 

ad hoc and driven by 

individual opinion and/or 

need. 

 

4. No formal  agreements 

for the storing and 

processing of sensitive 

information have been 

made 

partly implemented 

based on a coding 

standard. Guidelines are 

not included in a policy 

document.  

 

2. Use of (a selected 

number of) secure 

coding policies, but 

partly implemented in 

tools/frameworks 

dependent on the 

maturity of the 

development team. 

 

3. Selection of external 

software components 

(including software 

libraries) is performed 

based on partly 

implemented policies 

and based on a per case 

evaluation. 

 

4. Rules for the storing 

and processing of 

sensitive information are 

made. 

included in a policy document 

that is communicated through 

the relevant parts in the 

organisation. The standard is 

reviewed periodically. 

 

2. Implementation of a selected 

number of reliable and secure 

coding policies and 

enforcement of these policies in 

the pipeline by use of coding 

tools/frameworks integrated in 

the programming editor. 

 

3. External software 

components (including software 

libraries) are selected based on 

agreed upon guidelines that 

have been implemented 

throughout the organisation. 

These guidelines are aimed at 

compliance on security / 

maturity requirements. 

 

4. Rule for the storing and 

processing of sensitive 

information are made. A scan is 

performed to uncover sensitive 

information 

The coding standard 

contains guidelines for the 

use of (a) programming 

language(s), programming 

style, practices and 

methods. The standard is 

known by the relevant parts 

in the organisation and its 

application is measured 

against, for example, 

industry standards.  

 

2.Selected (secure) coding 

policies are implemented 

and enforcement of these 

policies by use of coding 

tools/frameworks is 

integrated in the 

programming editor (e.g. 

eslint, pylint, pep8, etc.). 

Metrics for coding quality 

have been defined. 

 

3. External software 

components (including 

software libraries) are 

selected based on agreed 

upon guidelines throughout 

the organisation. These 

guidelines are aimed to 

ensure compliance with 

security / maturity 

requirements. The 

application guidelines and 

the selection of external 

tools is measured and 

minimum metrics defined. 

 

4.  Rules for the storing and 

processing of sensitive 

information are made. A 

scan is performed 

periodically to uncover 

sensitive information. The 

adherence to the agreement 

is measured. 

The coding standard contains 

guidelines for the use of (a) 

programming language(s), 

programming style, practices 

and methods. The standard is 

known by the relevant parts in 

the organisation. The 

application is continuously 

evaluated and tested as part 

of good risk management 

practice. 

 

2. Ensure the use of selected 

(secure) coding policies and 

enforcement of these policies 

by use of coding 

tools/frameworks integrated 

in the programming editor 

(e.g. eslint, pylint, pep8, etc.). 

The implemented coding 

policies are continuously 

reviewed and improved upon 

when possible.  

 

3. External software 

components (including 

software libraries) are 

selected based on agreed 

upon guidelines that have 

been implemented 

throughout the organisation. 

These guidelines are aimed at 

compliance with security / 

maturity requirements. The 

guidelines and the selection 

of external tools are 

continuously reviewed and 

updated.  

6 Develop 

(test) 

Incorporate risk-based automated 

testing as an integral part of the 

development workflow. Developers  

create and maintain automated test 

cases (unit and/or component tests) 

that demonstrate the code functions 

as intended and adheres to 

approved design and coding 

standards.  

 

All automated tests are stored in 

version control alongside the 

codebase to ensure continuous 

1. Verify that a risk-based 

testing approach is defined 

and applied, requiring at 

minimum automated unit or 

component testing of all 

code changes.  

 

2. Confirm that the team 

has established, and 

documents, explicit 

requirements for test 

coverage (e.g., percentage 

per module or feature), 

BAI03.07 Prepare for 

solution testing 

BAI07.04 Establish a 

test environment 

BAI03.08 Execute 

solution testing 

1. Testing is an ad hoc 

approach and minimum 

requirements have 

informally been set. 

 

2. Ad-hoc measures or 

requirements for test 

coverage are set. 

1. A (risk based) test 

approach is partially 

implemented with a 

minimum level of tests. 

 

2. Requirements on risk 

allowance and test 

coverage, or equivalent 

industrial standard, are 

set but partially 

implemented and its 

application is not 

1. A risk based test approach is 

documented and implemented 

and requires the execution of at 

least Unit Testing or 

Component Testing of the code 

changes made by the 

developer. 

 

2. Requirements on risk 

allowance and test coverage, 

equivalent industrial standard, 

are set and implemented and 

are measured and/or reported. 

1. A risk based test 

approach is documented and 

implemented and requires 

the execution of at least Unit 

Testing or Component 

Testing of the code changes 

made by the developer. The 

execution of the approach is 

measured and periodically 

verified. 

 

2. A test approach is 

implemented and includes 

1. A risk based test approach 

is documented and 

implemented and requires the 

execution of at least Unit 

Testing and Component 

Testing of the code changes 

made by the developer. 

Identification of possibilities 

for structural improvement is 

integral to the test approach. 

 

2. A test approach is 

implemented and includes 



 

 

 

DevOps in Control – January 2026 

Page 36 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

validation and enable reliable testing 

of future changes (see control #4 as 

well). 

aligned with industry 

benchmarks or internal 

targets. Ensure regular 

reviews are performed to 

assess test coverage 

evolution, adjusting 

thresholds or strategies 

based on code quality 

metrics, defect leakage, or 

evolving risk profile. 

 

Confirm the testing 

approach allows for 

variation in test depth, 

coverage, and review 

depending on the criticality 

of the change (e.g., 

standard vs. critical vs. non-

critical), and that criteria for 

classifying change criticality 

are clearly documented.  

documented well. 

 

requirements on risk 

allowance test coverage. 

Risk levels and test 

coverage, equivalent 

industrial standard, is 

measured and meets a 

minimum required level of 

test coverage (%) per specific 

code module or equivalent 

industrial standard . 

requirements on risk 

allowance and test coverage. 

Test coverage is continually 

evaluated for effectiveness 

based on a required level of 

minimal test coverage (%) per 

specific code module, 

equivalent industrial standard, 

and risk evaluation of 

deficiencies. Possibilities for 

improvement are identified 

and learnings from other 

steps must be used to 

improve.  

7 Develop A peer review of the code is 

mandatory for code changes and are 

executed based on the organizations 

code review guidelines. 

1. The team has 

documented code review 

guidelines (potentially 

incorporating SAST 

requirements), based on 

best practices such as the 

Google Style Guide and, 

where relevant, enhanced 

with security checks from 

the OWASP Application 

Security Verification 

Standard. 

 

2. Upon local commit, the 

developer pushes the code 

to a separate branch in the 

version control system 

(VCS). 

 

3. A pull/merge request is 

created and both peer 

review by another developer 

and automated quality 

checks (e.g., build status, 

static analysis, unit tests, 

SonarQube gates) are 

triggered and enforced by 

the VCS or pipeline. See also 

control #8, 9, 10, 11 and 12 

on testing.  

 

4. The merge into the main 

branch is only permitted 

after all peer review 

comments are 

resolved/approved and 

automated quality checks 

pass. Failed checks block 

the merge; the developer is 

responsible for addressing 

BAI03.08 Execute 

solution testing 

BAI03.03 Develop 

solution components 

 1. Code review 

guidelines are not 

available  

 

 2. A branch policy has 

not been defined 

formally 

 

 3. A peer review is not 

performed or performed 

ad hoc 

 1. The team uses code 

review guidelines for 

their peer review, 

however these are 

informal and not 

completely documented 

yet. 

  

 2. A branch policy is 

defined and peer review 

is available in the VCS. 

 

 3. Peer reviews are 

performed, however not 

yet enforced in the VCS. 

 1. Formal code review 

guidelines are documented and 

available. A minimum rule set 

has been defined by the 

organisation. 

  

2 & 3. A branch policy is 

defined peer reviews are 

configured as a mandatory 

activity in the VCS. 

 1. Based on experience 

from performed peer reviews 

the effectiveness of the code 

review guidelines is 

measured. Tooling for 

automated code review is 

used. 

 

 2 & 3. A branch policy is 

defined peer reviews are 

configured as a mandatory 

activity in the VCS. Metrics 

are defined and reported 

upon to identify the number 

of merged requests after 

peer review and potential 

exceptions. 

 1. Code review guidelines are 

continuously improved when 

deficiencies are identified. 

Tooling for automated code 

review is used and 

continuously optimised for 

purpose. 

 

 2 & 3. Automated alerting is 

in place when a merge 

request is performed without 

peer review. 



 

 

 

DevOps in Control – January 2026 

Page 37 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

issues. 

 

5. If applicable, a pair 

programming approach may 

be accepted as an 

alternative to formal review, 

provided this is documented 

and meets organizational 

policy. The process is 

enforced through VCS 

branch protection and/or 

pipeline settings to prevent 

bypassing required reviews 

and tests. 

8 Build All changes to infrastructure and 

application code are automatically 

tested during the build process 

using integrated security tools (e.g., 

SAST, automated dependency 

scanning, OS baseline checks). 

Builds failing organizationally 

defined security thresholds are 

blocked from merging 

1. Ensure the build process 

incorporates automated 

security scanning, including 

(but not limited to): 

- Software vulnerability 

scanning 

- Third-party (open-source) 

component/library scanning 

for known vulnerabilities 

and licensing/compliance 

issues 

- Code dependency 

scanning for weak or 

outdated dependencies 

- Operating system baseline 

scanning 

- Static code analysis 

(including ruleset 

conformance and security 

testing) 

 

2. Confirm that clear, 

documented minimum 

security requirements are 

set by the organization, and 

that the build will fail 

automatically if these 

criteria are not met. 

 

3. Verify that all findings 

from security scans are 

tracked, assigned, and 

remediated within timelines 

defined by organizational 

policy, with appropriate 

follow-up and 

documentation. 

BAI03.08 Execute 

solution testing 

DSS05.02 Manage 

network and 

connectivity security 

DSS05.07 manage 

vulnerabilities and 

monitor the 

infrastructure for 

security-related events 

1. The 

vulnerability/baseline 

scans and test plans 

during the build process 

regarding 

infrastructure/application 

codes, do not contain 

software, code, security 

and  third party aspects. 

Ad hoc secure code 

scanning and informal 

use of peer reviews takes 

place. 

 

2. Ad hoc rule settings 

on failing the build  

1. The 

vulnerability/baseline 

scans and test plans 

during the build process 

regarding 

infrastructure/application 

codes, contain software, 

code, security and  third 

party aspects. 

 

2. Rules are set 

informally by the team 

on falling the build 

1.   During the build process, 

dependent on the team's risk 

profile, the following 

automated vulnerability scans 

are performed (not exhaustive 

list): 

o  software vulnerability 

scanning; 

o  third-party (open-source) 

component/library scanning for 

known vulnerabilities and 

licensing issues; 

o  code dependency scanning 

for (weak) dependencies; 

o  operating system baseline 

scanning; 

o  static code analysis 

(conformance to defined 

rulesets and security testing). 

 

2. A rules set has been defined 

by the team on failing the build 

(based on documented minimal 

requirements). 

1. Execution and 

effectiveness of the 

automated vulnerability 

scans is measured. 

 

2. The rules set on failing 

the build as set by the team 

are recorded and measured. 

1. The automated 

vulnerability scans are 

evaluated periodically on 

effectiveness. Improvements 

are made where required. 

Checks are made of improving 

vuln. scanning tools to use in 

building process.  

 

2. The rules set on failing the 

build as set by the team are 

evaluated periodically. 

Improvements are made 

where required. Root cause of 

software build errors lead to 

new or improved scanning 

tooling. 

9 Test After a successful build, the 

automated delivery process initiates 

integration testing of the entire code 

base in a production-like 

environment. These integration 

tests—whether automated or 

manual—validate that all 

components interact correctly with 

their dependencies and that major 

1.Validate if the team has 

developed a documented 

integration test plan 

specifying the scope of 

tests, test methods, 

frequency, required tools, 

and the process for 

resolving test findings. 

Where appropriate, verify 

that a generic integration 

BAI03.07 Prepare for 

solution testing 

BAI07.04 Establish a 

test environment 

BAI03.08 Execute 

solution testing 

1. The integration test 

during the delivery 

process regarding 

changes are performed 

ad hoc. 

 

2 The integration test are 

performed in an 

environment, which is 

not similar to the 

1. The integration test 

during the delivery 

process are performed 

informally. 

 

2 The integration test are 

performed in a test-

environment for the 

application similar to 

production environment  

1.   The team has created an 

integration test plan specifying 

which tests, test methods, test 

frequency and test tools to 

apply for the given change, 

including the resolution method 

to apply. Where applicable a 

generic test plan related to the 

complete solution may apply 

instead of a test plan per 

1. Performance indicators on 

the integration test process 

are recorded. 

 

2 Compliance of the 

integration tests with 

test/QA plans is 

measured/recorded. 

 

3. Test/QA plan metrics, test 

1. The integration tests 

during the delivery process 

regarding changes are 

performed by a formalized 

plan. Management improves 

the test planning based on 

the performed evaluation of 

test results and test plans. 

 

2 The integration test are 



 

 

 

DevOps in Control – January 2026 

Page 38 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

product features function as 

intended. 

test plan has been defined 

for the overall solution, or 

that individual test plans are 

used for specific changes as 

needed. 

 

2. Ensure that a dedicated 

test environment is in place, 

closely mirroring the 

production environment in 

terms of configuration and 

integrations. To comply 

with privacy regulations, 

validate that rules and 

controls are established for 

the use of sensitive data in 

testing, for example by 

requiring anonymization or 

de-identification of personal 

data where applicable. 

 

3. Confirm that the test 

plan, test environment 

setup, and test results are 

reviewed and validated with 

relevant business 

stakeholders, with the 

product owner acting as 

their proxy if required. 

Document stakeholder sign-

off or feedback as part of 

the validation process. 

 

4. Ensure that all integration 

test findings are logged in a 

centralized register or 

tracking system. Verify that 

findings are actively 

monitored, assigned for 

follow-up, and resolved in a 

timely manner, with clear 

audit trails showing status 

and actions taken prior to 

production release. 

production environment. 

 

3. Test plan, test-

environment and test 

results are not 

shared/validated with 

stakeholders/Product 

owner. 

 

4. Test findings are 

registered in an informal 

way. A structured 

approach, use of logging 

and follow up not yet in 

place. 

 

3. Test plan, test-

environment and test 

results are shared in de 

DevOps-team (including 

Product owner, e.g. not 

validated). 

 

4. Test findings are 

registered in a database 

with name, date, resolve 

date, without tracking 

information. 

change. 

 

2.   A test environment that is 

commensurate with the 

enterprise environment is 

available (i.e., production-like). 

However, to comply with rules 

established for test data that 

comprises sensitive data, e.g. 

rules that specify for which 

types of personal data the test 

data sets should be 

anonymized (de-identified). 

 

3.   Test plan, set-up of the test 

environment and the test 

results are validated with the 

business stakeholder (product 

owner). 

 

4.   A register or log is 

maintained for test findings 

that need to be resolved. 

Tracking is performed in such a 

way that team members can 

easily follow the resolution of 

these findings to ensure safe 

delivery. 

environment variables and 

test results are recorded and 

measured. 

 

4.  Test findings are 

recorded and statistics are 

used.  

improved based on the 

performed evaluations. 

3. Outcomes are shared, 

validated and evaluated in 

retrospective with the 

stakeholders e.g. Product 

owner. Based on the 

retrospective with the 

stakeholders/product owners 

improvements are made 

regarding the Test plan, test-

environment and test results.  

 

4. Improvements are made for 

the test registration if 

applicable during the 

evaluation appears. Root 

causes for findings are 

evaluated and fixed. 

10 Test All testing scripts are developed and 

maintained in a version control 

system or versioned otherwise. This 

includes the test scripts for both the 

application code and the 

infrastructure. 

1.   Ensure tests scripts are 

documented to ensure all 

team members can follow 

the test progress 

throughout the process. 

 

2.   Where structural 

(testing) issues are present 

due to circumstances that 

cannot be remediated in the 

short term, these issues are 

properly documented 

including the cause, 

possible mitigation 

measures and suggestions 

for acceptance of the 

associated risk. These 

BAI03.08 Execute 

solution testing 

1. Verified and structured 

test scripts used a 

limited number of cases. 

Testing is ad-hoc and/or 

a structured process 

lacking. 

 

2. Structural issues are 

followed up in an ad-hoc 

manner.  

1. Test scripting is 

partially implemented 

and used scripts are 

partially stored in a 

managed repository. 

  

2. Structural testing 

issues are addressed by 

ad-hoc incidents/quick-

fixes and are partially 

documented/traced.  

1. Test scripting is 

implemented and is part of a 

documented process, using a 

system of version control, 

verified & approved and also 

scripts are stored in a managed 

repository.  

 

2. Structural testing issues are 

addressed in the product 

backlog and also centrally 

documented and tracked for 

effective and consistent follow-

up. 

1. Periodic monitoring and 

measurement of the 

scripting and the process is 

in place.  

 

2. Metrics on Structural 

testing are defined and 

integrated in quality control. 

The follow up on 

backlog/testing issues is 

measured and clearly shows 

how delayed issues are 

prioritized based on time on 

open status in 

backlog/testing issues 

listing. 

1. Test scripting is 

implemented and is part of a 

documented process, using a 

system of version control, 

verified & approved and also 

scripts are stored in a 

managed repository. Quality 

management continuously 

evaluates the scripting and 

the process to improve. 

 

2. Structural testing issues are 

centrally documented, traced 

via quality control, assessed 

for dependencies and 

scheduled for later handling. 

The backlog/testing issues 



 

 

 

DevOps in Control – January 2026 

Page 39 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

issues are proposed 

towards the product owner 

for acceptance and proper 

tracking and management 

attention. 

is/are continuously monitored 

and clearly shows how 

delayed issues are prioritized 

based on time on open status 

in backlog listing. 

Management challenges the 

product owner to address 

unresolved issues based on 

risk and market priority. 

11 Test For each release identified as 

requiring additional security 

assurance—based on risk 

assessment, non-functional 

requirements, or threat modelling—

targeted security tests (e.g., manual 

code review, vulnerability scanning, 

penetration testing) are performed 

to validate residual risks. Findings 

are prioritized, communicated to 

relevant stakeholders, and tracked 

to resolution. 

1. Confirm that the test 

approach and test plan 

explicitly define when 

releases require additional 

security assurance, based 

on documented risk 

assessment, non-functional 

requirements, or threat 

modelling. Verify that the 

chosen security testing 

methods (e.g., manual code 

review, vulnerability 

scanning, penetration 

testing) are suitable for the 

identified risks. 

 

2. Ensure that those 

performing or reviewing the 

security testing have 

relevant qualifications and 

experience appropriate to 

the risk and testing method. 

3. Verify that all security 

findings are systematically 

registered, risk-prioritized, 

and assigned owners for 

follow-up. Additionally, 

ensure that test results and 

identified risks are 

communicated promptly 

and appropriately to the 

product owner and other 

affected stakeholders—

including privacy, 

compliance, or business 

representatives when 

relevant. 

 

Note: Confirm that, 

although not mandatory, 

periodic validation/review of 

the overall security test 

approach is performed with 

experts from the central 

security or risk team. 

BAI03.08 Execute 

solution testing 

DSS05.02 Manage 

network and 

connectivity security 

DSS05.07 manage 

vulnerabilities and 

monitor the 

infrastructure for 

security-related events 

1. Test approaches and 

test plans do not or 

inconsistently address 

security aspects. 

 

2. The qualifications of 

the team members 

performing the security 

testing is unknown. 

 

3. Not all security based 

test findings are 

registered and 

prioritized. 

1. The test approach and 

test plans informally / 

indirectly address 

security testing and 

testing frequency. 

 

2. The team members 

performing the security 

testing have 

qualifications, but these 

are not documented. 

 

3. Exceptions are 

informally prioritized and 

followed up, however 

this cannot be 

determined based on 

documentation. 

1. The defined test approach 

and test plans contain security 

testing and testing frequency 

and is carried out according to 

plan. 

 

2. Security scans are 

performed/reviewed by team 

members with the proper and 

documented qualifications. 

 

3. Exceptions are well 

documented, prioritized and 

followed up. 

1. The execution of security 

testing according to defined 

test approach and test plans 

is measured. 

 

2. Metrics on security testing 

are available and reported.  

 

3. Meaningful / relevant 

metrics on exceptions are 

available. 

1. The defined test approach 

and test plans effectiveness is 

measured and evaluated 

periodically and 

improvements are identified. 

 

2. Security testing activities 

are periodically evaluated and 

improvements identified and 

documented. 

 

3. Periodically the metrics, 

exceptions and the process 

for exceptions (handling) is 

periodically evaluated and 

improved.  

12 Test User Acceptance Testing (UAT) is 

conducted on the finalized software 

build in a production-like 

environment, focusing on key 

business scenarios. Business process 

owners and end users actively 

participate in UAT to validate that 

1.   Ensure that UAT is 

performed in a production-

like environment 

established according to 

organizational standards. 

Validate that test data used 

in UAT complies with 

BAI07.03 Plan 

acceptance tests 

BAI07.04 Establish a 

test environment 

BAI07.05 Perform 

acceptance tests 

1. The test environment, 

when available, is not 

fully production-like. 

 

2. The business owner is 

insufficiently involved in 

the test process. 

1. A production-like test 

environment has been 

set  up. 

 

2. The business owner is 

informally involved in the 

test process. 

1. A production-like test 

environment has been set up 

and the requirements are 

documented. 

 

2. The business owner is 

involved in the test process and 

1. A production-like test 

environment has been set up 

and the requirements are 

documented and metrics on 

similarity are available. 

 

2. The business owner is 

1. A production-like test 

environment has been set up 

and the requirements are 

documented and periodically 

verified and continuously 

improved. 

 



 

 

 

DevOps in Control – January 2026 

Page 40 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

the solution meets business 

requirements and acceptance 

criteria. Any exceptions or defects 

identified are documented, tracked, 

and resolved prior to go-live. 

 

(Automated) User Acceptance 

Testing (UAT) is performed on the 

created software build in a 

production like environment are 

performed, and noted exceptions 

are followed up. Business process 

owners and end users are involved 

in the UAT test. 

privacy and data protection 

requirements (e.g., 

anonymization of any real 

personal data). 

 

2.  Confirm that a UAT plan 

is in place, defining specific 

business processes, key 

user scenarios, acceptance 

criteria, and roles for 

business process owners 

and end users. Verify active 

involvement of designated 

business process owners 

and end users in test 

execution. Confirm that test 

results and user feedback 

are reviewed and formally 

accepted by the business 

stakeholder(s) or product 

owner.   

 

3. Ensure all UAT findings 

and exceptions are logged 

in a tracking system, 

prioritized, and addressed 

promptly. Confirm that 

resolution of all critical 

findings is completed prior 

to production release, and 

that final business 

acceptance is documented. 

 

Note: In a modern CI/CD 

approach, where the 

automated tests in the 

Unit/Component Testing 

(#6) and Integration Testing 

phases (#9) cover all 

business rules, UAT tests 

are typically only needed to 

cover key usage scenarios. 

 

3. A log of test findings 

is not or partially 

available. 

 

3. A log of test findings 

is available, but not 

always consistently 

updated. 

the persons role is 

documented. 

 

3. A log of test findings is 

available, complete and 

maintained. 

involved in the test process 

and his role is documented. 

A periodical check exists to 

verify whether the business 

stakeholders executes his 

role. 

 

3. A log of test findings is 

maintained. Metrics on log 

characteristics are available. 

2. The business owner is 

involved in the test process 

and his role is documented. 

The role execution by 

business owners is 

periodically evaluated. 

 

3. A log of test findings is 

maintained. The test process 

is evaluated periodically 

based on the log findings. 

13 Producti

on 

Deploy 

Approved and tested deliveries are 

(automatically) deployed to the 

production environment. 

1. Confirm that 

deployments are performed 

strictly according to the 

documented change 

management process, which 

must describe the CI/CD 

workflow and define change 

categories (e.g., standard, 

normal, emergency).  

 

2. Verify that criteria for 

identifying and approving 

Standard (pre-

approved/low-risk) changes 

are well-defined (e.g., 

infrastructure updates, 

configuration tweaks). 

Check if specific 

requirements for these 

Not applicable 1. Change organization 

doesn't have procedure 

in place for their 

improvement and 

deployment process. 

 

2. Criteria and 

requirements for 

standard changes are not 

(yet) defined.  

 

3. Deployed changes are 

not related to the original 

change-request and no 

structural use of backlog 

system. 

 

4. No fallback scenario 

available for deployed 

1. Informal procedures 

for CI/CD are in place 

supporting structured 

deployment.  

 

2. Criteria and 

requirements for 

standard changes are 

informally used but not 

always consistently 

applied.  

 

3. A planning and 

backlog system for 

changes is in place but 

not yet used in a 

consistent way for 

managing deployment. 

 

1.   Deployment is performed 

based on the change 

management procedure 

describing the CI/CD process. 

The procedure describes the 

different change categories: 

Standard, normal and 

emergency changes. 

 

2.   The criteria for Standard 

changes  and the requirements 

for these changes e.g. do they 

need to be registered in the 

planning tool or is tracking in 

the VCS sufficient, what level of 

automated testing needs to be 

performed, is peer-approval 

required if sufficient automated 

testing are available. 

1. The performance of 

delivery process is measured 

on a constant base. 

 

2. The applicable criteria and 

requirements regarding 

deployed changes are 

measured consistently. 

 

3. The relation between de 

deployed changes and the 

original request is measured 

consistently. 

 

4. Performance of the fall 

back process for failed 

deliveries is measured and 

execution of analysis is 

monitored. 

1. Analyzing on a continuous 

basis of the CI/CD procedures 

lead to structural 

improvement of the change 

management process. 

 

2.Criteria for standard 

changes are evaluated on a 

regular basis supporting 

improvement of these criteria 

and effective planning and 

backlog management.  

 

3. All deployed changes can 

be linked to their respective 

change tickets in the backlog 

management system 

supporting continuously 

improvements features and 



 

 

 

DevOps in Control – January 2026 

Page 41 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

changes are applicable e.g., 

for documenting, 

registering, tracking, and 

approving these changes. 

 

3. Ensure all deployments 

are traceable to 

corresponding change 

request, incident, or feature 

tickets (e.g., via integration 

with JIRA or by referencing 

ticket numbers in VCS 

commit messages 

connected to deployments). 

Confirm linkage of 

deployments to user stories, 

defects, or incidents for 

improved auditability and 

context. 

 

4. Check that failed 

deployments have a clearly 

defined fallback mechanism 

(rollback or fix forward) 

with pre-documented steps. 

If applicable, verify that 

failures trigger a post-

mortem or retrospective 

review, analysing root 

causes and driving 

continuous improvement in 

the delivery pipeline. 

 

5. Confirm that all code 

deployments are executed 

exclusively via automated, 

closed CI/CD pipelines—

manual interventions or ad 

hoc scripts are not 

permitted for production 

deployment. 

changes and failures are 

not analyzed. 

 

5. Production 

deployments are 

performed manually 

using scripts or direct 

server access, without 

automation or 

traceability. 

4. Fallback scenario are 

in most cases available 

for deployed changes.  

 

5. CI/CD pipelines exist 

but are not consistently 

used; manual 

deployments still occur 

and are not formally 

restricted or tracked 

 

3.   The deployed changes are 

related to the respective change 

request tickets in the planning 

& backlog tool to allow more 

context for the executed 

changes such as linking them 

to feature defects, incidents or 

user stories.  

 

4.   Failed deliveries have clear 

fallback scenario (rollback / fix 

forward) and failures are 

analyzed to support optimizing 

the delivery pipeline. 

 

5. All production deployments 

are executed via automated 

CI/CD pipelines, with manual 

interventions formally 

prohibited and traceable to 

change requests 

 

5. Deployment automation is 

enforced and monitored; 

metrics are collected to 

measure compliance, and 

exceptions are logged and 

reviewed 

stories.  

 

4. All analyses of failed 

deliveries are evaluated on 

their value for improvements 

of fallback scenario leads and 

continuous improvement of 

the delivery pipeline leading 

to a decrease of failed 

deliveries. 

 

5. Deployments are fully 

automated and continuously 

improved; manual access is 

technically blocked, and 

failures trigger automated 

rollback and root cause 

analysis 

14 Producti

on 

Deploy 

Establish and maintain a monitoring 

approach for all business solutions 

and applications managed by the 

team, including their service 

delivery, to ensure alignment with, 

and measurable contribution to, 

enterprise objectives. 

1. Engage relevant 

stakeholders (e.g., business 

owners, operations, IT) to 

define clear monitoring 

objectives, scope, and 

measurement methods for 

each business solution or 

service. 

 

2. Verify the existence of a 

documented monitoring 

plan covering agreed 

KPIs/metrics, data sources, 

monitoring tools, roles and 

responsibilities, and review 

frequency. 

 

3. Ensure the monitoring 

approach is kept up to date 

and that outcomes are 

MEA01.01 A monitoring approach 

for system functioning 

and performance is not 

in place or agreed upon 

with stakeholders. 

A monitoring approach 

exists and is applied 

consistently for some 

solutions and services. 

Procedures are generally 

followed, but 

documentation and 

evidence of monitoring 

activities or outcomes 

may be incomplete or 

informal. 

A process for monitoring 

system functioning and 

performance is in place, 

approved and documented. 

Criteria for functioning and 

performance failure have been 

defined by management.  

IT, development and end 

users record any failures and 

issues with (new) 

functionality and system 

performance. Satisfaction of 

stakeholders regarding 

meeting defined business 

and process goals is 

measured using at least 

DevOps criteria as: lead time 

for changes, change failure 

rate, deployment frequency 

and mean time to recovery. 

Management and 

development teams 

periodically assess the 

outcomes of the monitoring 

activities and improvements 

are identified and defined by 

stakeholders. 



 

 

 

DevOps in Control – January 2026 

Page 42 van 49  

# Stage Control description Control assessment Relevant COBIT 

2019 controls 

Maturity level 1 Maturity level 2 Maturity level 3 Maturity level 4 Maturity level 5 

periodically reviewed with 

key stakeholders to drive 

continual improvement. 

 

 



 

 

 

 

DevOps in control – January 2026 

Page 43 of 49  
 

 
 
 

4. Conclusion 

As Forrester describes it, “Agile is the foundational pillar of the tech industry.” Backed by 95% 

of professionals who affirm its critical relevance to their operations, and 58% of business and 

technology leaders who prioritize Agile adoption, the message is unmistakable: Agile isn’t 

just enduring, it’s thriving. While its dominance remains clear, there’s also a growing 

consensus that continuous refinement is essential to meet the evolving demands of modern 

business
7

.   

The use of these principles is also adopted within (highly) regulated environments. A specific 

example is the cloud.gov platform [4] of the US Federal Government, a Platform as a Service 

(PaaS) solution for US government agencies deployed in the AWS GovCloud region. This 

platform is built based on Agile and DevOps principles, while at the same time meeting the 

requirements of a highly regulated environment (FedRAMP and FISMA) [5].  

Why, we might ask? 

This is answered perfectly by Gartner. They state, because: “Every business is a digital 

business. Every company is a software company. The key to gaining and sustaining 

competitive advantage in digital business, and a role in a digital society, will be in the 

development and continuous improvement of new IT-enabled capabilities and services for 

customers” [41]. 

ISACA adds that DevOps is the combination of people, culture, processes, tools and 

methodologies that reduce risk and cost, enable technology to change at the speed of the 

business, and improve overall quality [37].  

The application of Agile and DevOps principles and the achieved high-level of automation 

provides opportunities for the organization to enhance their audit approach to become more 

effective (higher level of assurance) and more efficient (less time). This is possible due to: 

● The use of a Version Control System (VCS) and Infrastructure as Code (IaC) principles 

gives full insight in all changes to the application source code and infrastructure 

components by recording who, what and when changes occurred (paragraph 2.2).  

● The application of IaC gives easier insight in the security baselines used to deploy 

instances. Testing of the proper application of security baselines on instances is 

often a very time-consuming and difficult control activity. Furthermore, the auditor 

can easily verify when recommended infrastructure security configuration settings 

have been applied whereas this is also difficult to assess when configurations are 

managed without application of automated configuration management [37]. 

● The ability to automatically execute code, vulnerability, dependency scanning tools 

on each change instead of the common periodic/monthly frequency and track the 

follow-up of relevant findings through the VCS and IaC logs instead of tickets in the 

service management tool (paragraph 2.3). 

 
7 https://www.forrester.com/blogs/amidst-the-ai-hype-agile-still-remains-relevant-in-2025/  

https://www.forrester.com/blogs/amidst-the-ai-hype-agile-still-remains-relevant-in-2025/


 

 

 

 

DevOps in control – January 2026 

Page 44 of 49  
 

 
 
 

● Normalization and standardization of the environment (within more mature teams), 

often by using a Shared Services teams, results in the consistent and reliable 

automation of controls (paragraph 2.3).   

● The availability of automated controls within the Delivery pipeline opens the 

possibility for the application of a system-based audit based on Reperformance test 

procedures as much as possible instead of Procedural-based audits based on 

Inspection of samples and formalized documents (paragraph 3.3).  

● For organizations which are not yet mature enough to apply higher levels of 

standardization and automated controls, the FEAT testing approach has been 

introduced to be applied until the criteria are met to use a system-based audit 

(paragraph 3.3). 

● Use of the several available Culture frameworks and surveys to assess the maturity 

of DevOps within organizations and teams can help in properly tailoring the control 

framework (paragraph 3.2). 

In paragraph 3.4 an updated maturity control framework has been presented which gives an 

overview of the controls that are necessary to be implemented within the Delivery pipeline in 

order to achieve the Change management control objective. Now organizations and IT 

auditors can also evaluate at which level of maturity they operate at mitigating risks in 

development and operations for their organizations.  

Even if organizations have not yet adopted Agile and DevOps formally, it is recommended 

that audit, risk and security professionals keep these practices on their radar and develop an 

understanding of their characteristics. DevOps approaches might find their way into the 

organization rapidly (perhaps through shadow adoption or as the result of a merger or 

acquisition). ISACA emphasizes the importance of IT auditors being prepared and having a 

seat at the table, to be able to timely discuss the context, associated risks and relevant 

security and audit controls [37]. We all know Benjamin Franklin’s famous quote “By failing to 

prepare, you are preparing to fail”.  IT auditors and other assurance professionals are in a 

symbiotic relationship with the IT department/teams and therefore must constantly prepare 

and gain knowledge of new IT technologies and principles.   



 

 

 

 

DevOps in control – January 2026 

Page 45 of 49  
 

 
 
 

Appendix A: Reference list 

 

[1] Kim, G; Humble, J; Debois, P; Willis. (2016). The DevOps Handbook – How to create world-class agility, 

reliability, & security in technology Organizations. Portland, United States of America: IT Revolution press, 

LLC. 

[2] Kim, G; Behr, K; Spafford, G. (2013). The Phoenix Project. A novel about IT, DevOps, and helping your 

business win. Portland, United States of America: IT Revolution press, LLC. 

[3] State of DevOps 2018. Consulted on November 4th 2025 on https://live-puppet-

p4.pantheonsite.io/resources/history-of-devops-reports#2018 

[4] What is cloud.gov. Consulted on May 19th 2019, on https://docs.cloud.gov/  

[5] How we work. Consulted on May 19th 2019, on https://18f.gsa.gov/how-we-work/  

[6] IT Revolutions. (2015). DevOps Audit Defense Toolkit.  

[7] Theory of constraints. Consulted on May 19th 2019, on 

https://nl.wikipedia.org/wiki/Theory_of_constraints  

[8] Lean manufacturing. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Lean_manufacturing 

[9] Toyota Kata. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Toyota_Kata#References 

[10] Fowler, M; Highsmith, J. (2001). The agile manifesto. Consulted on May 19th 2019, on 

https://agilemanifesto.org/iso/en/principles.html  

[11] Fowler, M. (2018 February 26th). The practical test pyramid. Consulted on May 19th 2019, on 

https://martinfowler.com/articles/practical-test-pyramid.html   

[12] DORA DevOps Assessment. Consulted on May 19th 2019, on https://devops-

research.com/assessment.html 

[13] Microsoft DevOps self-assessment. Consulted on May 19th 2019, on https://www.devopsassessment.net/ 

[14] Toyota Kata. Consulted on May 19th 2019, on https://en.wikipedia.org/wiki/Toyota_Kata#References 

[15] Secure Software Alliance – Framework Secure Software. Consulted on May 19th 2019, on 

https://securesoftwarealliance.org/framework-secure-software/ 

[16] Deming’s principles. Consulted on July 11th 2019, on https://en.wikipedia.org/wiki/W._Edwards_Deming   

[17] IT Revolution. (2018). Dear Auditor. DevOps community to Security with love. Consulted on July 12th 

2019, on https://itrevolution.com/product/dear-auditor/ 

[18] https://en.wikipedia.org/wiki/Waterfall_model   

[19] Benington, H.D. (1983). Production of Large Computer Programs. IEEE Educational Activities Department. 

[20] Royce, W. (1970). Managing the development of large software systems. IEEE WESCON. 

[21] Bell, T; Thayer, T.A. (1976). Software requirements: Are they really a problem? California. TRW Defense 

and Space Systems group. 

[22] Singleton, T.W. (2010). The minimum IT controls to assess in a financial audit (part 2). ISACA journal 

volume 2, 2010.  

[23] Casteren, W van. (2017). The waterfall model and agile methodologies: A comparison by project 

characteristics. Open Universiteit Nederland. 

[24] DevOps Topologies. Consulted on May 19th 2019, on https://web.devopstopologies.com 

[25] What is Infrastructure as code. Puppet labs. Consulted on May 19th 2019, on 

https://puppet.com/blog/what-is-infrastructure-as-code  

[26] Fowler, M. (2006). Continuous Integration. Consulted on May 19th 2019, on 

https://martinfowler.com/articles/continuousIntegration.html 

[28] Brodie, S. (2019). From Agile to DevOps to Continuous delivery. Consulted on May 19th 2019, on 

https://techbeacon.com/app-dev-testing/agile-devops-continuous-delivery-evolution-software-delivery  

https://live-puppet-p4.pantheonsite.io/resources/history-of-devops-reports#2018
https://live-puppet-p4.pantheonsite.io/resources/history-of-devops-reports#2018
https://docs.cloud.gov/
https://18f.gsa.gov/how-we-work/
https://nl.wikipedia.org/wiki/Theory_of_constraints
https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Toyota_Kata#References
https://agilemanifesto.org/iso/en/principles.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://devops-research.com/assessment.html
https://devops-research.com/assessment.html
https://www.devopsassessment.net/
https://en.wikipedia.org/wiki/Toyota_Kata#References
https://securesoftwarealliance.org/framework-secure-software/
https://en.wikipedia.org/wiki/W._Edwards_Deming
https://itrevolution.com/product/dear-auditor/
https://en.wikipedia.org/wiki/Waterfall_model
https://web.devopstopologies.com/
https://puppet.com/blog/what-is-infrastructure-as-code
https://martinfowler.com/articles/continuousIntegration.html
https://techbeacon.com/app-dev-testing/agile-devops-continuous-delivery-evolution-software-delivery


 

 

 

 

DevOps in control – January 2026 

Page 46 of 49  
 

 
 
 

[29] AICPA. (2018). Understanding the entity and its environment and assessing the risks of material 

misstatement. 

[30] Gartner. (2018). Seven Imperatives to adopt a CARTA approach.  

[31] Lencioni, P. (2002). The five dysfunctions of a team. John Wily & Sons. 

[32] PwC. (2013). Building digital trust – The confidence to take risks 

[33] Costa, A; Anderson, N. (2010). Measuring trust in teams: Development and validation of a multifaceted 

measure of formative and reflective indicators of team trust. Brunel University, Uxbridge, UK. 

[34] Westrum, R. (2004). A typology of organizational cultures. Quality Safety Health care publication 13(suppl 

2).  

[35] Google Project Aristotle. (2014): https://rework.withgoogle.com/intl/en/guides/understanding-team-

effectiveness 

[36] DevOps Enterprise Forum. (2015). Measure efficiency, effectiveness, and culture to optimize DevOps 

transformation. IT Revolution. 

[37] ISACA. (2015). DevOps Overview. An ISACA DevOps series white paper.  

[38] Plutora. (2019). Infrastructure as code: What is it, and why should my engineers care? Consulted on May 

19th 2019, on https://www.puppet.com/blog/what-is-infrastructure-as-code 

[39] Consultancy.nl. (2018). Continuous integration, continuous delivery: de stap na agile. Consulted on May 

19th 2019, on https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-

stap-na-agile.  

[40] ISACA. (2018). COBIT 2019 framework. Governance and Management Objectives.  

[41] Sondergaard, P. (2013). Everyone is a technology company. Gartner. Consulted on May 19th 2019, on 

https://blogs.gartner.com/peter-sondergaard/everyone-is-a-technology-company/  

[42] Digital AI. DevSecOps Tools Periodic Table. https://digital.ai/learn/devsecops-periodic-table/   

[43] Bagmar, A. (2012). Behavior Driven Testing (BDT) in Agile. Consulted on August 28
th

 2019, on 

https://www.slideshare.net/abagmar/anand-bagmar-behavior-driven-testing-bdt-in-agile 

[44] Postma, S. (2015). Schuberg Philis Delivery Pipeline. Schuberg Philis. 

[45] Fowler, M. (2014). Canary release. Consulted on August 30
th

 2019, on 

https://martinfowler.com/bliki/CanaryRelease.html 

[46] Gangaram Panday, S. (2015). Introducing the Full population & Exception Analysis Testing (FEAT) method. 

Schuberg Philis. 

  

https://rework.withgoogle.com/intl/en/guides/understanding-team-effectiveness
https://rework.withgoogle.com/intl/en/guides/understanding-team-effectiveness
https://www.puppet.com/blog/what-is-infrastructure-as-code
https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-stap-na-agile
https://www.consultancy.nl/nieuws/16755/continuous-integration-continuous-delivery-de-stap-na-agile
https://blogs.gartner.com/peter-sondergaard/everyone-is-a-technology-company/
https://digital.ai/learn/devsecops-periodic-table/
https://www.slideshare.net/abagmar/anand-bagmar-behavior-driven-testing-bdt-in-agile
https://martinfowler.com/bliki/CanaryRelease.html


 

 

 

 

DevOps in control – January 2026 

Page 47 of 49  
 

 
 
 

Appendix B: Acronym list 

 
AI Artificial Intelligence 

AICPA American Institute of Public Accountants 

API Application Programming Interface 

ASVS Application Security Verification Standard 

AWS Amazon Web Services 

BCP Business Continuity Planning 

BDT Behavior Driven Testing 

CAAT Computer Assisted Auditing Technique 

CAB Change Advisory Board 

CARTA Continuous Adaptive Risk and Trust Assessment 

CD Continuous Delivery 

CI Continuous Integration 

COBIT Control Objectives for Information and related Technology 

CD Continuous Delivery 

Dev Development 

DevOps Development and Operations 

DevSecOps 

DORA 

Development, Security and Operations 

DevOps Research and Assessment 

DRP Disaster Recovery Planning 

DSDM Dynamic Systems Development Methodology (now Atern) 

EDP Electronic Data Processing 

FEAT Full population & Exception Analysis Testing 

FedRAMP Federal Risk and Authorization Management Program 

FISMA Federal Information Security Management Act 

GRC Governance, Risk and Compliance 

IaC Infrastructure as Code 

IEEE Institute of Electrical and Electronics Engineers 

ISACA International Systems Audit and Control Association 

ISAE International Standard for Assurance Engagements 

IT Information Technology 

ITGC IT General Controls 

NOREA Nederlandse Orde van Register EDP-Auditors 

Ops Operations 

OS Operating System 

OWASP Open Web Application Security Project 

PaaS Platform-as-a-Service 

PRINCE2 Projects In Controlled Environments 2 

RE Register EDP-Auditor 

RMM Risk of Material Misstatement 

SAS Statements on Auditing Standards 

SIT System Integration Test(ing) 

SSA Secure Software Alliance 

SSH Secure SHell 

ToC Theory of Constraints 

TRW Thompson Ramo Wooldridge 

UAT User Acceptance Test(ing) 

UK United Kingdom 

US United States 

UT Unit Test(ing) 

VCS Version Control System 

WESCON Western Electronics Show and Convention 

XP eXtreme Programming 

  



 

 

 

 

DevOps in control – January 2026 

Page 48 of 49  
 

 
 
 

Appendix C: Initial waterfall phases 

 

 

 

Figure 8: Initial waterfall phases [19] 

  



 

 

 

 

DevOps in control – January 2026 

Page 49 of 49  
 

 
 
 

Appendix D: Periodic table of DevOps tools 

 

 

Figure 9: Digital AI. DevSecOps Tools Periodic Table [42]  

  


