POST-QUANTUM CRYPTOGRAPHY: A NEW CYBERSECURITY ERA

Joppe Bos, Senior Principal Cryptographer Competence Center Crypto & Security

NOREA QUANTUM-SEMINAR NOVEMBER 2022

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

SECURE CONNECTIONS FOR A SMARTER WORLD

OUR DIGITALLY ENHANCED WORLD IS EVOLVING TO ANTICIPATE AND AUTOMATE

NXP Semiconductors N.V. (NASDAQ: NXPI) is a global semiconductor company creating solutions that enable secure connections and infrastructure for a smarter world. NXP focuses on research, development and innovation in its target markets.

AUTOMOTIVE

NXP and German Aerospace Center DLR Collaborate on Quantum Computing Technologies in Germany

October 27, 2022 8:32 AM EDT (UTC-4) by NXP Semiconductors

Press Release

COMMUNICATION

INFRASTRUCTURE

CONTEMPORARY CRYPTOGRAPHY TLS-ECDHE-RSA-AES128-GCM-SHA256

ADVANCES IN QUANTUM COMPUTING

Quantum computers hold the promise of being able to take on certain problems exponentially faster compared to a normal computer

- Healthcare and pharmaceuticals
- Materials
- Sustainability solutions
- Financial trading
- Big data and many other complex problems and simulations

SO, WHEN IS IT GOING TO BE HERE ?

EXPERTS' ESTIMATES OF THE LIKELIHOOD OF A QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS

The experts were asked to indicate their estimate for the likelihood of a quantum computer that is cryptographically relevant—in the specific sense of being able to break RSA-2048 quickly—for various time frames, from a short term of 5 years all the way to 30 years.

LIKELIHOOD ESTIMATED BY THE EXPERT (may be interpreted as risk)

© https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/

NP

Quantum Potential To destroy Security As We know it

Confidential email messages, private documents, and financial transactions

Secure today but may be compromised in the future, even if recorded & encrypted

Firmware update mechanisms in vehicles

May be circumvented and allow dangerous modifications

Critical industrial and public service infrastructure (for healthcare, utilities, and transportation using internet and virtual private networks) Could become exposed - potentially destabilize cities

Audit trails and digitally signed documents associated with safety (auto certification and pharmaceutical authorizations) Could be retrospectively modified

The integrity of blockchains

Could be retrospectively compromised - could include fraudulent manipulation of ledger and cryptocurrency transactions

POST-QUANTUM CRYPTO <u>STANDARDS</u> ARE COMING IT DOESN'T MATTER IF YOU BELIEVE IN QUANTUM COMPUTERS OR NOT

POST-QUANTUM CRYPTO STANDARDIZATION

STAY SAFE

Practice good hygiene and safety measures during of a hurricane evacuation or impact. Keep family considerations in mind and don't be afriad to conto leadership for guidance.

POST-QUANTUM CRYPTO IS ON THE HORIZON

TYPICAL EXAMPLES

Automotive

New platform designed <u>now</u> will likely enter the market after 2024 and remain in use for many years

(Industrial) IoT

Devices sold now need to be able to support the new PQC standard in 2024: crypto agility

Many embedded IoT platforms are resource constrained: 4-16 KiB memory

IMPACT PQC ON OUR ECO-SYSTEM

Data collection, processing and decisions at the edge Devices securely connected to the cloud

No Silver Bullet

If a crypto scheme was better, we would have standardized this already

Cryptographic Keys

Orders of magnitude larger. In the final: up to 1.3MB Winners: up to 4.8KB (ECC: 32 bytes, RSA: 384 bytes)

Performance

Varies: some faster some significantly slower. SHA-3 is a dominating component (~80%) → HW co-processor

Memory

Orders of magnitude more: up 100KB memory of RAM when executing NXP has dedicated implementations reaching ~16KB of RAM

Bandwidth & Power

Larger signatures (up to 4.6KB) → more bandwidth required → increase in power usage

KEY-EXCHANGE IMPACT

Kyber **co-designed by NXP** with IBM, ARM and academic partners

- Measurements on Cortex-M4
 @ 168MHz from pqm4 framework
- Functional implementation only (not hardened)
- **70 ~ 80 percent** of run-time in SHA-3

DIGITAL SIGNATURE IMPACT

6

ditte

9

USE CASE STUDY IMPACT ASSESSMENT (SG32G AS AN EXAMPLE)

NAND

NO

IMPLEMENTING CLASSICAL CRYPTOGRAPHY

Approach	Core	Structure	Size
RSA	Modular multiplication	$(\mathbb{Z}/n\mathbb{Z})^*$	<i>n</i> is 3072-bit
ECC	Elliptic curve scalar multiplication	$E(\mathbb{F}_p)$	p is 256-bit
Lattice	Polynomial multiplication	$(\mathbb{Z}/q\mathbb{Z})[X]/(X^n+1)$	<i>q</i> is 16-bit <i>n</i> is 256

KRONECKER SUBSTITUTION

Polynomial domain

$$f = 1 + 2x + 3x^2 + 4x^3$$

 $g = 5 + 6x + 7x^2 + 8x^3$

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.

(Von L. Kronecker.)

(Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.)

$$fg = 5 + 16x + 34x^2 + 60x^3 + 61x^4 + 52x^5 + 32x^6$$

Kronecker domain (with evaluation point 100)

f(100) = 4030201 $\star \frac{g(100) = 8070605}{fg(100) = 32526160341605}$

PUBLIC 19

ARITHMETIC CO-PROCESSORS

RDWARE	ARITHMETIC CO- PROCESSORS	Dedicated secure hardware widely available to accelerate ECC and RSA
XISTING HAF	POST-QUANTUM CRYPTOGRAPHY	PQC work on completely different objects. Not straight- forward to re-use this hardware
RE-USING E	KRONECKER+	Our new approach to run PQC on existing and deployed hardware. See: Bos, Renes, van Vredendaal; Post-Quantum Cryptography with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer; USENIX 2022

multiplications required

Multiplier width	512	256	128	
Schoolbook	256	1024	4096	
Kronecker+	16	32	64	

	000000			
000000				

		001
	-(001

000000

PQC DEMO: HSE SECURE BOOT OVERVIEW

PQC DEMO: HSE SECURE BOOT OVERVIEW

S32G2 VEHICLE NETWORK PROCESSOR - A NEW TYPE OF AUTOMOTIVE PROCESSOR

OUR TARGET PLATFORM: S32G274A

3 Lockstep Arm[®] Cortex[®]-M7 Microcontrollers

4 Cluster Lockstep Cortex-A53 Microprocessors

8 MB of system RAM

POST-QUANTUM CRYPTO

Can we enable PQC secure boot?

Integrate PQC secure signature verification

www.nxp.com/S32G2

BENCHMARKS FOR AUTHENTICATION OF FW SIGNATURE ON THE S32G2

	Size		Performance (ms)			
Alg.			1 KB		128 KB	
	PK	Sig.	Inst.	Boot	Inst.	Boot
RSA 4K	512	512	2.6	0.0	2.7	0.2
ECDSA-p256	64	64	6.2	0.0	6.4	0.2
Dilithium-3	1952	3293	16.7	0.0	16.9	0.2

- Demonstrator only, further optimizations are possible (such as hardware accelerated SHA-3)
- Signature verification only required once for installation!
- During boot the signature verification can be replaced with a check of the Reference Proof of Authenticity

To appear:

J. W. Bos, B. Carlson, J. Renes, M. Rotaru, D. Sprenkels, G. P. Waters: Post-Quantum Secure Boot on Vehicle Network Processors. Embedded Security in Cars (escar) 2022

FO-CALYPSE

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

High-assurance implementations

Use meta-information to extract information about the key used in your target platform / product. Many powerful techniques:

fault injections, simple power analysis, differential power analysis, correlation power analysis, template attacks, higher-order correlation attacks, mutual information analysis, linear regression analysis, horizontal analysis, etc

High-assurance implementations

It took many years to find secure and fast protections for RSA + ECC \rightarrow still cat-and-mouse game

What about Post-Quantum Cryptography?

The Fujisaki-Okamoto (FO) transformation (or slight variants) underlies the IND-CCA security of many KEMs, e.g.:

Exemplary Decapsulation:

NP

Attack 1: Chosen Plaintext

• Attacker inputs only valid ciphertexts

Attack 1: Chosen Plaintext

Attacker inputs only valid ciphertexts

Attack 1: Chosen Plaintext

- Attacker inputs only valid ciphertexts
- Attack focuses on **CPA Decryption**, everything after (and including) **P** is public

Only need to protect CPA Decryption

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

Attack 2: Chosen Ciphertext

- Attacker inputs specially-crafted invalid ciphertexts
- Attack focuses on **CPA Decryption +** everything after (and including) **P** is potentially sensitive
- Potentially all (or most) modules need to be hardened

Why is it bad?

Millions of Points of Interest (Pol)

Most recently at TCHES-2022:

Masked Kyber / Saber is broken with only 15k traces.

Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs

Rei Ueno^{1,2,3}, Keita Xagawa⁴, Yutaro Tanaka^{1,2}, Akira Ito^{1,2}, Junko Takahashi⁴ and Naofumi Homma^{1,2}

- Unprotected Kyber is (unsurprisingly) not sufficient for both noise levels
- There is a gap of roughly **x100** between the attacks for high(er) noise

Can this be overcome through masking?

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

Higher *d* = Higher security + Increased cost

Pre-Quantum: Certified industrial solutions **d = 2-3**

Number of Shares

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

- Higher *d* = Higher security + Increased cost
- Pre-Quantum: Certified industrial solutions d = 2-3

For low noise:

- Known ciphertext \rightarrow d = 6
- Chosen ciphertext \rightarrow d = 8

FO leakage causes an increase of 2 shares.

For high(er) noise:

- Known ciphertext \rightarrow d = 2
- Chosen ciphertext \rightarrow d = 3

FO leakage causes an increase of 1 share.

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

d=2	d=3	d=4	d=5	d=6	d=7
3.5x	64x	110x	197x	293x	397x

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

d=2	d=3	d=4	d=5	d=6	d=7
3.5x	64x	110x	197x	293x	397x
18x	High(er)				

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

* For this specific implementation + board

Requires further stack usage optimization.

Eeakage caused by the FO significantly increases deployment costs of affected KEMs

Alternative Solution: Encrypt-then-Sign KEM

Replace FO check by **signature verification** for some use cases

- Uses less shares because no FO leakage
- Verification only with public values (no SCA protection)

Alternative Solution: Encrypt-then-Sign KEM

Replace FO check by **signature verification** for some use cases

- Uses less shares because no FO leakage
- Verification only with public values (no SCA protection)

Example: Kyber + Dilithium

CONCLUSIONS

<u>Irrelevant</u> if the quantum threat is real or not
 New PQC-Standard are coming!
 → Post-quantum crypto is already being requested

For embedded platforms challenges in terms of

- Performance, memory and key-sizes
- How to efficiently achieve protection against sophisticated side-channel attacks?

- ✓ Think about migration paths now
- ✓ Exciting times to work on crypto & security solutions!

CONTACT: <u>PQC@NXP.COM</u> | NXP.COM/PQC

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.