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1. Introduction

Note
Readers must have sufficient knowledge of mathematics, (quantum) physics, electronics, classical computing
(hardware and software) and numerical optimisation methods.

1.1. Adiabatic theorem

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to the German-
British physicist Max Born and the Russian physicist Vladimir Aleksandrovich Fock, was stated as
follows: A physical system remains in its instantaneous eigenstate (Box 1.1) if a given perturbation
is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian's spectrum (Box 1.2).

An eigenstate is the measured state of some object possessing quantifiable characteristics such as
position, momentum, etc. (the word "eigenstate" is derived from the German word "eigen", meaning
"inherent" or “characteristic"). The state being measured and described must be observable (i.e.
something such as position or momentum that can be experimentally measured either directly or
indirectly), and must have a definite value, called an eigenvalue. In the everyday world, it is natural and
intuitive to think of every object being in its own eigenstate; this is just another way of saying that every
object appears to have a definite position, a definite momentum, a definite measured value and a
definite time of occurrence. However, in quantum mechanics, Heisenberg’s uncertainty principle, named
after the German theoretical physicist Werner Karl Heisenberg, implies that it is impossible to measure
the exact value for the momentum of a particle, given that its position has been determined at a given
instant and likewise, it is impossible to determine the exact location of that particle once its momentum
has been determined at a particular instant. Therefore, it becomes necessary to formulate clearly the
difference between the state of something that is uncertain and the state of something having a definite
value. When an object can definitely be "pinned down" in some respect, it is said to possess an
eigenstate.

Box 1.1: Eigenstate

The Hamiltonian of a quantum system, named after the Irish mathematician and physicist William Rowan
Hamilton, is an operator corresponding to the total energy of that system, including both kinetic energy
and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the
set of possible outcomes obtainable from a measurement of the system's total energy.

Box 1.2: Hamiltonian
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1.2. Adiabatic theorem-based problem solving

Figure 1.1: Adiabatic theorem-based problem solving (source: Olivier Ezratty 2024)

An adiabatic process consists of gradually changing conditions, allowing the quantum system to adapt
its configuration, hence the spatial probability density is modified by the process. If the quantum system
starts in an eigenstate of the initial Hamiltonian, it will end in the corresponding eigenstate of the final
Hamiltonian.

Box 1.3: Adiabatic process

A diabatic process consists of rapidly changing conditions, preventing the quantum system from
adapting its configuration during the process, hence the spatial probability density remains unchanged.
Typically there is no eigenstate of the final Hamiltonian with the same functional form as the initial
state. The quantum system ends in a linear combination of states that sum to reproduce the initial
probability density.

Box 1.4: Diabatic process

Reverse annealing uses classical simulated annealing to find a trivial solution which is then transferred
to quantum annealing to find better solutions.

Box 1.5: Reverse annealing

Note
Annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to
increase its ductility and reduce its hardness, making it more workable. In the case of ferrous metals such as
steel, annealing is performed by heating the material (generally until glowing) for a while and then slowly
letting it cool to room temperature in still air. In this fashion, the metal is softened and prepared for further
work such as shaping, stamping or forming.
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Optimisation problems can be solved in three different ways based on the adiabatic theorem:

1. Quantum annealing with a Quantum Annealer (QA)

Quantum annealing is based on an optimisation process for finding the global minimum of
an objective function (Box 1.6) using a slow Hamiltonian making use of quantum tunnelling
(Box 1.7); see § 2.2 for details.

An objective function is either a cost function (aka loss function) or a profit function (aka reward
function), which an optimisation problem seeks to minimise (cost function) or maximise (profit
function).

Box 1.6: Objective function

Quantum tunnelling is a quantum mechanical phenomenon in which a particle passes through a
potential energy barrier that, according to classical mechanics, the particle does not have sufficient
energy to enter or surmount. Quantum tunnelling is a consequence of the wave nature of matter,
where wave equations such as the Schrödinger wave equation (named after the Austrian and
naturalised Irish physicist Erwin Rudolf Josef Alexander Schrödinger) describe the behaviour of a
particle (see § 2.1). The probability of transmission of a particle wave packet through a barrier
decreases exponentially with the barrier height, the barrier width and the particle's mass.
Therefore, tunnelling is seen most prominently in low-mass particles such as electrons or protons
tunnelling through microscopically narrow barriers.

Box 1.7: Quantum tunnelling
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2. Simulated annealing with a classical Digital Annealer (DA)

A DA is a dedicated digital computing system that use a non-Von Neumann architecture
(Box 1.8) to minimise data movement in solving combinatorial optimisation problems. Such
a system is composed of thousands of bit-updating blocks with on-chip memory that stores
weights and biases, logic blocks to perform bit flips, and interfacing and control circuitry.
Rather than programming the DA, a problem is uploaded in the form of weight matrices and
bias vectors so as to convert the problem into an “energy landscape”. Problem solving with
a DA is very similar to problem solving with a QA.

The Von Neumann architecture (named after the American mathematician, physicist, computer
scientist and engineer John von Neumann) is a computer architecture based on a 1945 description
by Von Neumann and others. It describes a design architecture for a digital computer system with
the following components: a Central Processing Unit (CPU) that contains an Arithmetic Logic Unit
(ALU) and processor registers, a Control Unit (CU) that contains an Instruction Register (IR) and
Program Counter (PC), memory that stores data and instructions, external mass storage and input
and output mechanisms.

Box 1.8: Von Neumann computer architecture

3. Adiabatic quantum algorithm on a universal gate-based quantum computer

A universal gate-based quantum computer is a device that takes input data and transforms
this input data according to a quantum circuit specification. A quantum circuit specifies a
set of qubits and the sequence of operations to be performed on these qubits, i.e.
preparation of qubits, quantum gate operations on the qubits and qubit measurements.

In classical computing the information is encoded in bits, where each bit can have the value
zero or one. In quantum computing the information is encoded in qubits. A qubit is a two-
level quantum system where the two basis qubit states are usually written as ∣0⟩ and ∣1⟩. A
qubit can be in state ∣0⟩, state ∣1⟩ or (unlike a classical bit) in a linear combination
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(superposition) of both states α∣0⟩ + β∣1⟩. The amplitudes α and β are complex numbers
that correspond with the probabilities that their measured value is either “0” or “1”. The trick
in devising an algorithm for a quantum computer is to choreograph a pattern of constructive
and destructive interference for its qubits, so that for each wrong answer the contributions
to these qubit amplitudes cancel each other out, whereas for the right answer the
contributions reinforce each other.

1.3. History and current status of quantum annealing and related
technologies

The idea to implement quantum annealing using the quantum tunnelling effect originated in 1988
and 1989 in Italy and Germany. It was then perfected in Japan in 1998 with the introduction of
quantum fluctuations into the simulated annealing process of optimisation problems, aiming at
faster convergence to the optimal state.

A year later, D-Wave Quantum Systems Inc. was established in British Columbia (Canada), as an
offshoot from the University of British Columbia (UBC). It funded academic research in quantum
computing, thus building a collaborative network of research scientists from several universities
and institutions, including UBC (Canada), IPHT Jena (Germany), Université de Sherbrooke (Canada),
University of Toronto (Canada), University of Twente (Netherlands), Chalmers University of
Technology (Sweden), University of Erlangen (Germany) and NASA’s Jet Propulsion Laboratory (JPL).

On February 13, 2007, D-Wave Quantum Systems demonstrated a prototype 16-qubit quantum
annealing processor called Orion.

On May 11, 2011, D-Wave Quantum Systems announced D-Wave One, described as "the world's
first commercially available quantum computer", operating on a 128-qubit chipset. The oldest
D-Wave Quantum Systems publicised case study came from Google and NASA, using a D-Wave
One QA to solve an optimisation and combinatorial problem in a graph.

In 2013, Google and NASA set up a joint quantum computing laboratory, named Quantum
Artificial Intelligence Lab (QuAIL), and they experimented with D-Wave QAs.

In December 2015, Google and NASA announced that the D-Wave 2X QA outperformed both
simulated annealing and QMC (Box 1.9) by a factor up to 100,000,000 on a set of hard
optimisation problems (Figure 1.2). This was without any doubt the first oversold quantum
advantage (Box 1.10) claim.

Quantum Monte Carlo (QMC) encompasses a large family of computational methods whose common aim
is the study of complex quantum systems. One of the major goals of these approaches is to provide a
reliable solution (or an accurate approximation) of the quantum many-body problem. The diverse flavours
of QMC approaches all share the common use of the Monte Carlo method to handle the multi-dimensional
integrals that arise in the different formulations of the many-body problem. The Monte Carlo method
refers to a broad class of computational algorithms that rely on repeated random sampling to obtain
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numerical results. The underlying concept is to use randomness to solve problems that might be
deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary
developer of the method, the Polish-American mathematician, nuclear physicist and computer scientist
Stanisław Ulam (who participated in the Manhattan Project), was inspired by his uncle's gambling habits.

Box 1.9: Quantum Monte Carlo (QMC)

Figure 1.2: Google and NASA 2015 announcement (source: V.S. Denchev et al.)

Quantum advantage is the goal of demonstrating that a quantum computer can solve a practical problem
that no classical computer can solve in any feasible amount of time. Conceptually, quantum advantage
involves both the engineering task of building a powerful quantum computer and the computational
complexity-theoretic task of finding a problem that can be solved by that quantum computer and has a
more than polynomial speedup over the best known or possible classical algorithm for that task.

Box 1.10: Quantum advantage

Quantum annealing was explored in 2016 by the IARPA agency in its Quantum-Enhanced
Optimization (QEO) project, which aimed to create an adiabatic computer void of some of the
limitations from D-Wave QAs, particularly in terms of connectivity and quality of qubits. This
project was folded into DARPA’s Quantum Annealing Feasibility Study (QAFS) project in February
2020, which produced an experimental 25-qubit QA system.

Stanford University has been working on quantum annealing for many years. In 2016, they created
a prototype photonic based QA with 100 qubits having an all-to-all connectivity (10,000
connections). This research is still going on and involves NTT in Japan.
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The European Annealing-based Variational Quantum processors (AVaQus) project, launched in
October 2020, brings together five research laboratories: Institut de Física d'Altes Energies of
Barcelona in Spain, Karlsruhe Institut für Technologie (KIT) in Germany, CNRS Institut Néel in
France, the University of Glasgow in the UK and the Consejo Superior de Investigaciones Científicas
in Madrid (Spain) and it is associated with three start-ups: Delft Circuits (Netherlands), Qilimanjaro
(Spain) and HQS (Germany). The project obtained funding independently of the EU Quantum
Flagship program.

The Taiwanese National Science and Technology Council (NSTC) provides funding for the
development of Compal Electronics’ GPU Annealer system which is driven by NVIDIA CUDA-Q
Solvers.

D-Wave Quantum Systems is currently the only commercial manufacturer of QA systems (see
§ 3.1). An undisclosed number of their QA systems is deployed on-premises (mostly by very large
organisations), but the vast majority of its customers use cloud-based quantum computing
services provided by D-Wave Quantum Systems, either directly or through Amazon Marketplace.
Most customers are currently either experimenting with quantum annealing or else conducting
proof-of-concept projects, only a few of them use QAs in their production environments.

Qilimanjaro benefits from European funding through AVaQus and is developing a QA based on
superconducting flux qubits (see § 3.2).

NEC is developing a QA based on superconducting parametrons (see § 3.3).

NTT developed a Coherent Ising Machine (CIM) system based on optical technology (see § 3.4).

NEC (see 3.3) , Fujitsu (see § 3.5), Hitachi (see § 3.6) and Toshiba (see § 3.7) developed quantum-
inspired annealing systems that are based on classical digital technology.

Sharp is developing a Simulated Quantum Annealer (SQA) for controlling Automatic Guided
Vehicles (AGVs); see § 3.8.

Notes

1. Theoretically, quantum algorithms for universal gate-based quantum computers can be converted to
algorithms for QAs (and vice versa), with polynomial time overhead (which can be quite substantial).
However, many more qubits will be required for the QA quantum algorithm than for the universal gate-
based quantum computer algorithm (dependent on the quantum algorithm type).

2. The American theoretical physicist John Phillip Preskill believes that the QA architecture is theoretically
not as scalable as the universal gate-based quantum computer architecture hence there is no convincing
theoretical basis for the advantage of quantum annealing. As of today, there has been no convincing
proof that quantum annealing is capable of outperforming the best classical solutions to optimisation
problems in terms of speed, but there may be other valid reasons to implement quantum annealing
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solutions, such as for example lower Total Cost of Ownership (TCO), environmentally friendlier solution1,
etc.

3. While quantum advantage obtained with quantum annealing experiments is routinely reported, such
claims lack definite proof. Researchers infer that they have achieved quantum advantage, but they cannot
prove that this superiority is over any competing classical solution.

4. In March 2025 D-Wave Quantum Systems claimed having achieved quantum advantage in solving a
useful real-world complex optimisation problem, outperforming state-of-the-art classical methods.
According to D-Wave Quantum Systems, a D-Wave QA performed magnetic materials simulation in just
a few minutes while it would have taken more than one million years on a classical supercomputer built
with GPU clusters (and would have consumed more than than the world’s annual electricity production).

1 For example, D-Wave Quantum Systems developed and demonstrated a prototype Proof-of-Quantum Work (PoQW)
blockchain mechanism that replaces classical Proof-of-Work (PoW) mechanisms. PoQW enables generation and
validation of blockchain hashes by means of QAs, thus eliminating reliance on power-hungry classical mining based
on ASICs and GPUs (a reduction of three orders of magnitude has been observed during the demonstration).
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2. Quantum annealing basics

2.1. Quantum-mechanical evolution of quantum objects

According to the Copenhagen interpretation of quantum mechanics, the Schrödinger wave
equation is the best possible description of a quantum system.

Figure 2.1: Schrödinger wave equation (source: Olivier Ezratty 2021)

This equation describes the quantum-mechanical evolution of a massive non-relativistic
quantum object as a wave function, giving the probability of finding the quantum object at a
particular position in space at a given time. “Massive” refers to quantum objects that have mass
(unlike for example photon particles which are massless). “Non-relativistic” refers to quantum
objects whose kinetic energy is smaller than twice their rest mass energy as defined by the
famous equation E=mc2 of the Swiss-American theoretical physicist Albert Einstein. This implies
that the speed of these quantum objects is not close to the speed of light which is 299,792,458
metres per second in a vacuum (denoted by c from the Latin celeritas).

Schrödinger’s equation is a partial differential equation, i.e. it connects its components via
derivative functions, in this case of first degree (a slope on a curve) and of second degree (an
acceleration). The quantum object’s wave function appears three times in the equation: to the
left of the equation with a first derivative on the time of the wave function, to the right with a
second derivative on its position and with a simple multiplication with the function V(x).

The unknown in Schrödinger’s equation is the wave function of the quantum object 𝜓(x,t) which
describes its probabilistic behaviour in space and time (x indicates the position of the quantum
object in space, with one, two or three dimensions depending on its constraints, and t is the
time). This function returns a complex number that encodes the wave’s amplitude and phase.
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The wave function’s square is equal to the probability of finding the quantum object at location
x at time t. The sum of the probabilities of finding the quantum object somewhere is of course
equal to 1; this is called the normalisation constraint.

The 𝜓(x,t) function must be a continuous function and “filled” everywhere in space. Its value is
bounded by 0 and 1. It is a single value, even in the case of superposition. In that case, the
𝜓(x,t) is a linear superposition of two 𝜓 functions and is itself a 𝜓 function (because a quantum
superposition is just another wave function).

The operator that acts on the right side of the Schrödinger equation and accumulates kinetic
and potential energy function is the Hamiltonian, which describes the total energy of the system.
Its spectrum, the quantum system's energy spectrum or its set of energy eigenvalues, is the set
of possible outcomes obtainable from a measurement of the quantum system's total energy.
This Hamiltonian plays an important role in the quantum annealing process (see § 2.2).

The potential energy of the quantum object is defined by the function V(x) which depends only
on the quantum object’s position in space and its physical constraints. When a quantum object
is free and moves without constraints, this function returns zero.

The Schrödinger equation is linear over time, which means that any combination of solutions of
the equation becomes a new solution of the equation. This makes it possible to decompose a
wave function into several elementary wave functions that are called the "eigenstates" of the
quantum object. They correspond to the different energy levels of the quantum object that are
discrete when it is constrained in space. The equation’s linearity has a lot of consequences, like
for example superposition and entanglement.

Any nanoscopic, microscopic or macroscopic massive non-relativistic object (all the way to the
entire universe) has a Schrödinger wave function but the equation only makes practical sense
for nanoscopic objects as it can only be analytically solved in a limited number of simple cases
(e.g. for the electron of an hydrogen atom, for a free particle, for a particle in a potential well or
box, or for a quantum harmonic oscillator). In more complex cases, the resolution of the
equation requires non-analytical methods, raw calculation and simulation (Box 2.1). It is one of
the fields of application of quantum simulation to solve the Schrödinger equation in cases where
analytical methods are not available.

A quantum simulator is an analogue quantum computer that is capable of simulating quantum objects
and solving related problems, particularly in materials physics. These are the quantum computers that
the American theoretical physicist Richard Phillips Feynman had in mind when he introduced the term
“quantum computer” in 1981. Quantum simulators should not be confused with quantum emulators
which are classical computer systems capable of emulating quantum circuits.

Box 2.1: Quantum simulator

The Schrödinger equation is not applicable to massive relativistic quantum objects, i.e. particles
that have mass and velocities near light speed and very high energies, or particles which are
massless, e.g. photons (Box 2.2).
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The photon is an elementary subatomic particle. It is the quantum of the electromagnetic field, including
electromagnetic radiation such as light and radio waves, and it is the force carrier for the electromagnetic
force. Photons do not have electrical charge, they have zero mass and zero rest energy, and they only
exist as moving particles. The speed of photons in a medium depends upon the medium and is always
slower than c.

Box 2.2: Photon

The time evolution of massive relativistic quantum objects is described by the Dirac equation,
named after the British theoretical physicist Paul Adrien Maurice Dirac, and Klein-Gordon
equation, named after the Swedish theoretical physicist Oskar Benjamin Klein and the German
theoretical physicist Walter Gordon.

The time evolution of photons is described by Maxwell’s equations, named after the Scottish
physicist and mathematician James Clerk Maxwell, and their various derivations.

2.2. Quantum annealing process

The problem to be solved with quantum annealing is converted into either an Ising problem (Box
2.3) or a Quadratic Unconstrained Binary Optimization (QUBO) problem (Box 2.4). The Ising or
QUBO problem formulation is then translated into a Binary Quadratic Model (BQM) formulation
which defines an objective function with binary variables, a quadratic component and linear
constraints. BQM problems are NP hard problems (Box 2.5).

The Ising model aka Lenz-Ising model, named after the German physicists Ernst Ising and Wilhelm Lenz,
is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete
variables that represent magnetic dipole moments of atomic spins that can be in one of two states (+1
or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically
in all directions), allowing each spin to interact with its neighbours. Neighbouring spins that agree have
a lower energy than those that disagree. The system tends to the lowest energy but heat disturbs this
tendency, thus creating the possibility of different structural phases. The model allows the identification
of phase transitions as a simplified model of reality.

Box 2.3: Ising model

Quadratic Unconstrained Binary Optimization (QUBO) is a combinatorial optimisation problem with a wide
range of applications. Moreover, due to its close connection to the Ising model, QUBO constitutes a central
problem class for Adiabatic Quantum Computing (AQC), where it is solved through quantum annealing.

Box 2.4: Quadratic Unconstrained Binary Optimization (QUBO)

The Polynomial (P) versus Nondeterministic-Polynomial (NP) problem asks whether every problem whose
solution can be quickly verified can also be solved quickly. The informal term “quickly” means the
existence of an algorithm solving the task that runs in polynomial time, such that the time to complete
the task varies as a polynomial function on the size of the input to the algorithm which solves the problem
instance. The class of questions for which some algorithm can provide an answer in polynomial time is P.
For some questions, there is no known way to find an answer quickly, but if one is provided with
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information showing what the answer is, it is possible to verify the answer quickly. The class of questions
for which an answer can be verified in polynomial time is NP.

Box 2.5: P versus NP

Figure 2.2 and the paragraphs that follow describe quantum annealing based on the Ising
problem formulation, where the binary variables σi of the objective function are represented by
physical Ising spins, Jij σi σj are elements of the quadratic components and hi σi are linear
constraints.

Figure 2.2: Quantum annealing - Ising problem formulation (source: Olivier Ezratty 2022)

Note
In the QUBO problem formulation, the N binary variables of the objective function are represented by an
upper-diagonal matrix, where diagonal terms are the linear coefficients, and the nonzero off-diagonal terms
are the quadratic coefficients.

The quantum annealing process starts with assigning linear coefficients aka biases (hi in Figure
2.2) to a set of interconnected qubits (with values σi) on the QA system. This corresponds to
setting the absolute qubit energy on each qubit as a linear coefficient (bias).

The links between the qubits are assigned weights (Jij in Figure 2.2) that are defined by the qubit
couplers. This corresponds to setting the relative qubit connection energy in the longitudinal field
(z) for each pair of qubits.

Note
With current QA technologies, the values of hi and Jij are discretised by Digital-to-Analogue Converters
(DACs); see for example § 4.4. These DACs introduce significant sampling noise due to their low sampling
rate with typically only a couple of hundred different steps. Consequently, the precision of the data of the
problem to be solved is rather low (and certainly far from high-precision floating-point used in scientific
computation).
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The QA system is then initialised with setting the qubits at |+⟩, which is a perfect superposition
between |0⟩ and |1⟩, corresponding to the lowest-energy state of the system, i.e. the tunnelling
Hamiltonian. A perfect superposition between the qubit’s |0⟩ and |1⟩ basis states means that there
is an equal probability of measuring 0 and 1.

After initialisation of the QA system, a transverse magnetic field is applied to the set of qubits.
It is then progressively reduced down to zero, which, as a result of quantum tunnelling through
peaks, will drive the QA system to an equilibrium state that corresponds to a minimum energy
level.

The strength of the transverse magnetic field determines the quantum-mechanical probability
to change the amplitudes of all quantum states in parallel. The rate of change of the transverse
magnetic field is slow enough so that the QA system stays close to the ground state of the
instantaneous Hamiltonian.

The quantum annealing process takes place with controlled evolutions of the tunnelling
Hamiltonian energy A(s), also called transverse energy, and the problem Hamiltonian energy B(s),
with tuning of the transverse magnetic field affecting the QA’s qubit chipset. In the equations in
Figure 2.2, it means reducing the value of A(s) and increasing the value of B(s) accordingly (usually
not linearly), see Figure 2.3. This leads to automatically modifying the quantum states of the
qubits (spin up or down in the z direction) towards a result that corresponds to the solution of
the submitted problem (when the QA system is expected to have reached the ground state of the
Ising model).

The qubits are then read (aka measured) and this generates a value of +1 or a value of -1 for each
of them depending on their quantum state. The result that is obtained is inherently probabilistic,
and not just because noise gets involved with an unknown time-evolving Hamiltonian ℋ𝑛(𝑡).
Hence the whole process is iterative with several quantum annealing passes and their results being
averaged. The accuracy of the result obtained result improves with the number of passes
executed.

Note
There are variations in the implementation of this process with regards to the qubit coupling mechanism.
It can have only one degree of freedom (z) as for the D-Wave QAs (see § 4.3), or two and three degrees of
freedom (x, y and z) as for the QAs that Qilimanjaro is planning to develop (see § 3.2).
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Figure 2.3: Energy states evolution example (source: D-Wave Quantum Systems 2024)
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3. Quantum annealing, related technologies and manufacturers

3.1. D-Wave Quantum Systems Inc.

D-Wave Quantum Systems (Canada) has advanced quantum annealing technology steadily with
the first three generations of QA prototypes created between 2007 and 2009 and four generations
of commercial QAs, starting with the D-Wave One in 2012 (128 pairwise-coupled qubits), followed
by the D Wave 2000Q in 2017 (2,048 qubits, each qubit being coupled to 6 other qubits), the
D-Wave Advantage with the Pegasus chipset launched in 2020 (5,640 qubits, each qubit being
coupled to 15 other qubits), and the D-Wave Advantage 2 (with 4,400 qubits and 20-way qubit
connectivity) in 2025.

D-Wave Quantum Systems’ Leap quantum computing cloud service (Figure 3.1) provides real-
time access to D-Wave 2000Q and Advantage QA platforms and to the Hybrid Solver Service (HSS).
D-Wave QAs and HSS can also be accessed via the AWS Marketplace.

Figure 3.1: QA quantum computing environment (source: D-Wave Quantum Systems 2024)

Figure 3.2 shows a simplified diagram of the sequence of steps, the dark red set of arrows, to
execute a quantum job on a D-Wave QA, starting and ending on a user’s client system. Each
quantum job consists of a single input together with parameters. Quantum jobs are sent across a
network to the Solver API (SAPI) server and join a queue. Each queued quantum job is assigned to
one of possibly multiple workers, which can run in parallel. A worker prepares the quantum job
for the Quantum Processing Unit (QPU) and postprocessing, sends the quantum job to the QPU
queue, receives samples (results) and post-processes them (overlapping in time with QPU
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execution), and bundles the samples with additional quantum job execution information for return
to the client system.

Figure 3.2: Quantum job execution (source: D-Wave Quantum Systems 2024)

Notes

1. The QPU executes one quantum job at a time (this execution time is known as the quantum job’s QPU
access time), during which the QPU is unavailable to any other quantum job.

2. The total time for a quantum job to pass through the D-Wave QA system is the service time. However,
the execution time for a quantum job as observed by a client includes service time and internet latency.

3. Server-side postprocessing is limited to computing the energies of returned samples. D-Wave Quantum
Systems’ Ocean software (see § 5.1) provides additional client-side postprocessing tools (more complex
postprocessing can provide performance benefits at low timing cost).

According to D-Wave Quantum Systems, their QAs could provide quantum speedup for many
problem types for which universal gate-based quantum computers provide quantum speedup,
but this has not been proven yet on large scale problems.

D-Wave quantum annealing hardware is described in Chapter 4 and D-Wave quantum annealing
software is described in Chapter 5.
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3.2. Qilimanjaro Quantum Tech SL

Qilimanjaro Quantum (Spain) is a start-up from the Barcelona Supercomputing Center (IFAE) and
the University of Barcelona. Qilimanjaro Quantum develops a QA based on superconducting flux
qubits. Their differentiation compared to QAs from D-Wave Quantum Systems is better qubit
coherence and better qubit connectivity.

Qilimanjaro Quantum benefits from European funding through the Annealing-based Variational
Quantum processors (AVaQus) project. It involves the superconducting team at Institut Néel in
Grenoble (France) who designs the microwave amplifiers used in flux qubits readouts.

Qilimanjaro Quantum is also developing Qibo, an open-source quantum middleware platform.
Qibo (Figure 3.3) features an open-source full-stack API for quantum emulation and quantum
hardware control. Qibo is the cloud operating service to run software batches on the future
Qilimanjaro Quantum QA, classical quantum emulators and gate-based quantum computers, with
a design pattern to create classical/quantum hybrid algorithms. Qilimanjaro Quantum also plans
to sell their future QA systems to customers willing to use them on-premises.

Figure 3.3: Qibo components (source: Qibo 2023)

3.3. NEC Corporation

NEC (Japan) is developing a QA using superconducting parametrons (Box 3.1) based on the
Josephson effect (Box 3.3) for implementing superconducting qubits.
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A parametron, aka Parametric Phase-Locked Oscillator (PPLO) is a logic circuit element invented by the
Japanese computer scientist Eiichi Goto in 1954. The parametron is essentially a resonant circuit with a
nonlinear reactive element which oscillates at half the driving frequency. The oscillation can be made to
represent a binary digit by the choice between two stationary phases π radians (180 degrees) apart.
Parametrons were used in early Japanese computers due to being reliable and inexpensive but were
ultimately surpassed by transistors due to differences in speed. See see Box 3.2 and Figure 3.4.

Box 3.1: Parametron

A Phase-Locked Oscillator (PLO) is an electronic device designed to generate a stable and precise output
frequency by locking the phase of its internal oscillator to a reference signal. The PLO uses a feedback
control system called a Phase-Locked Loop (PLL) to synchronise the output signal of a Voltage-Controlled
Oscillator (VCO) with the phase and frequency of a reference oscillator. This ensures that the generated
signal maintains a fixed frequency with high stability, even in the presence of environmental changes
such as temperature variations.

Box 3.2: Phase-Locked Oscillator (PLO)

The Josephson effect, named after the British physicist Brian David Josephson, is a phenomenon that
occurs when two superconductors are placed in proximity, with some barrier or restriction between them.
It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are
observable at ordinary, rather than atomic, scale. The Josephson effect produces a current, known as a
supercurrent, that flows continuously without any voltage applied, across a device known as a Josephson
junction, which consists of two or more superconductors coupled by a weak link creating a quantum
tunnel junction. The weak link can be a thin insulating barrier (known as a superconductor-insulator-
superconductor junction), a short section of non-superconducting metal or a physical constriction that
weakens the superconductivity at the point of contact.

Box 3.3: Josephson effect

Figure 3.4: Parametric Phase-Locked Oscillator (source: NEC 2023)

NEC’s ambition is to produce a coherent QA system “with all-to-all qubit connectivity” but which
actually seems to be only nearest-neighbour connectivity (Figures 3.5 and 3.6).
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Figure 3.5: QA development roadmap (source: NEC 2023)

Figure 3.6: Vector Annealing (VA) with Vector Engine (VE) accelerator (source: NEC 2024)
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3.4. Nippon Telegraph and Telephone (NTT) Corporation

NTT (Japan) developed a Coherent Ising Machine (CIM). CIM is is a computing technique based on
optical neural networks which can solve combinatorial optimisation problems by mapping them
onto “hard” Ising optimisation problems.

CIM systems (Figure 3.7) use single-mode photon squeezing (Box 3.4), oscillation at degenerate
frequency, Optical Parametric Oscillators (OPOs, Box 3.5) and a measurement feedback technique.

Figure 3.7: Coherent Ising Machine (source: Peter McMahon 2023)

A beam of squeezed light has a lower quantum uncertainty than a beam of coherent photons, at least for
some phases of the electromagnetic oscillation hence squeezed light has quantum correlations that
enable more precise measurement.

Box 3.4: Photon squeezing

An Optical Parametric Oscillator (OPO) is a coherent light source based on parametric amplification within
an optical resonator. It converts an input laser wave (called "pump") into two output waves of lower
frequencies.

Box 3.5: Optical Parametric Oscillator (OPO)
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CIM optimisation is a bifurcation process guided by both the OPO nonlinearity and the optical
coupling between OPOs (implementing many-to-many connectivity).

CIM has distinct advantages over other types of optimisation technologies:

 it is faster and more energy-efficient than classical computing and CMOS digital annealing;

 it is not constrained to the relatively short annealing times and corresponding problem sizes
of current QA and gate-based quantum computer technology.

CIM technology may also prove to be useful for Artificial Intelligence (AI) applications such as
machine learning. Research is currently underway at MIT on applying CIM-like hardware to
accelerate deep neural networks.

3.5. Fujitsu Ltd.

Fujitsu (Japan) developed a quantum-inspired DA that is capable of solving large-scale complex
combinatorial optimisation problems in near real-time. Using a digital circuit CMOS design
inspired by quantum phenomena, the DA focuses on rapidly solving complex combinatorial
optimisation problems without the added complications and costs typically associated with
quantum computing methods.

The Fujitsu DA supports 8,192-bit full connectivity, with flexible partitioning for parallel operation
and scaling to match problem size and precision requirements. It can be deployed rapidly and
easily accessed remotely as a cloud service via Web APIs (Figure 3.8). Fujitsu's DA can also be
installed at a customer site for a monthly subscription (Figure 3.9).

Figure 3.8: Fujitsu digital annealer cloud service (source: Fujitsu 2024)
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Figure 3.9: On-premises Fujitsu digital annealer (source: Fujitsu 2024)

3.6. Hitachi Ltd.

Hitachi (Japan) developed a DA which implements the behaviour of the Ising model by means of a
CMOS circuit. Hitachi’s CMOS Annealing Machine (Figure 3.10) can efficiently find practical
solutions to combinatorial optimisation problems at room temperature.

Figure 3.10: CMOS Annealing Machine circuit board (source: Hitachi 2024)

The annealing comprises two processes (Figure 3.11). The first process reproduces the
interactions between spins in the Ising model, thereby decreasing the amount of energy in the
annealing system. The second process injects noise into the circuit that is reproducing the spins,
thereby intentionally disrupting the spins' states. With only the first process, there is a risk that
the process becomes fixed on a local solution, i.e. a section where energy expenditure is not at a
minimum. The second process avoids fixation on local solutions by seeking a global solution, i.e.
the section with minimal total energy expenditure.
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Figure 3.11: CMOS Annealing Machine - Ising model implementation (source: Hitachi 2024)

3.7. Toshiba Corporation

Toshiba (Japan) developed a Simulated Quantum Bifurcation Machine (SQBM), a quantum-inspired
optimisation solution based on the Simulated Bifurcation Machine (SBM). SBM is a combinatorial
optimisation solver utilising Toshiba’s Simulated Bifurcation (SB) algorithm.

Figure 3.12: Mapping real-world problems to the SBM solver (source: Toshiba 2024)
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SQBM implements a practical and ready-to-use Ising machine that solves large-scale
combinatorial optimisation problems (with up to 10 million variables). It is implemented on
standard classical computers complemented with FPGAs or GPUs. SQBM is also available as a SaaS
solution on the AWS cloud platform.

In addition to the general-purpose QUBO solver, Toshiba also provides additional solvers,
including:

 Quadratic Assignment Problem (QAP) solver

A solver that directly solves QAP problems without expressing them in QUBO. Use case
example: optimal placement of facilities to minimise the cost of transporting goods between
them.

 Quadratic Programming (QP) solver

A solver that directly solves quadratic binary optimisation problems with linear constraints.
Compared to solving similar problems with the QUBO solver, there is no need to incorporate
linear constraints into and adjust penalty parameters, thus making it easier to obtain highly-
accurate solutions.

 Polynomial Unconstrained Binary Optimization (PUBO) solver

Supports cubic and quartic problems for solving real-life combinatorial optimisation problems
that contain cubic or higher terms.

 Traveling Salesperson Problem (TSP) solver

A solver that directly solves TSP type problems without expressing the solution in QUBO.

 SHIFT solver

A solver that directly solves shift scheduling problems. Use case example: assigning jobs to
employees while considering various constraints, without using QUBO.

Real-life combinatorial optimisation problems may contain continuous variables. Solving such
problems with the QUBO solver requires conversion to quadratic expressions and binary variables,
which would result in severe performance degradation. SQBM therefore utilises the features of the
SB algorithm to support continuous variables, in order to achieve higher solution performance for
these types of combinatorial optimisation problems.

SQBM’s parameter automatic adjustment function automates the tuning of unique SBM
parameters and quickly finds better solutions without the hassle of manual adjustment.
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3.8.Sharp Corporation

Sharp Corporation (Japan) develops an SQA and an AGV Operating System (AOS), which is capable
of controlling more than 1,000 AGVs (also called transport robots) that carry goods and parts in
logistics warehouses2 (Figure 3.13).

Figure 3.13: Sharp AGV SQA system (source: Sharp 2024)

Sharp’s SQA machine is developed jointly with with Tohoku University. It uses FPGA circuits
capable of performing parallel calculations at high speed and implements quantum algorithms in
a special circuit design, enabling the simulation of quantum annealing on classical computers.

AGV route calculation is a combinatorial optimisation problem that can be solved with an Ising
model and an objective function. Sharp’s SQA technology is not limited to AGV route calculations
in logistics warehouses and could be applied to a wider range of use cases.

2 According to Sharp, the most advanced QAs currently only support no more than 5,000 AGVs.
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4. D-Wave quantum annealing hardware

4.1. Cryogenic subsystem

D-Wave QA qubits operate at 10 to 15 mK and thus require a cryostat (using a dry dilution system).

The cryogenic part includes an enclosure with five layers of magnetic isolation (Figure 4.1) and
consumes about 16 kW out of a total energy consumption of about 25 kW. The remaining 9 kW is
consumed by the classical part of the qubit control system outside the cryostat.

Figure 4.1: Cooling, magnetic shielding and vacuum (source: D-Wave Quantum Systems 2023)

4.2. QPU technology

The D-Wave QPU is a network of superconducting flux qubits that are tunably coupled.

The qubits deployed in D-Wave QAs are niobium-based radio-frequency Superconducting
Quantum Interference Devices (rf-SQUIDs). These rf-SQUID devices exploit superconducting
current loops interrupted by two Josephson effect barriers that are controlled by variable magnetic
fluxes (Figure 4.2).
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Figure 4.2: rf-SQUID flux qubit (source: D-Wave Quantum Systems 2023)

4.3. Qubit connection technology

In a D-Wave QA system, the hardware graph topology describes the pattern of physical
connections between qubits and their couplers. The most important difference between the
2000Q and Advantage QPUs is the upgrade from the Chimera to the Pegasus topology.

Figure 4.3 compares a Chimera example graph on the left (a 6-by-6 grid of unit cells) with a
Pegasus example graph on the right (which contains 27 unit cells on a diagonal grid, plus partial
cells around the perimeter). Both example graph topologies contain about the same number of
qubits: 288 in the Chimera graph and 264 in the Pegasus graph.

Figure 4.3: Chimera vs. Pegasus qubit connectivity (source: D-Wave Quantum Systems 2023)
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In Chimera qubits are oriented vertically or horizontally.

Chimera has two types of coupler: internal couplers connecting pairs of orthogonal qubits (i.e.
pairs of qubits with opposite orientation) and external couplers connecting colinear pairs of qubits
(i.e. pairs of qubits that are parallel, in the same row or column).

In the Chimera topology, qubits have a nominal length of 4 (each qubit is connected to 4
orthogonal qubits through internal couplers) and degree of 6 (each qubit is connected to 6
different qubits through couplers).

In Pegasus, as in Chimera, qubits are oriented vertically or horizontally.

Pegasus has, in addition to Chimera’s internal and external couplers, a third type of coupler: odd
couplers. Odd couplers connect parallel qubit pairs in adjacent rows or columns.

In the Pegasus topology, qubits have a nominal length of 12 (each qubit is connected to 12
orthogonal qubits through internal couplers) and degree of 15 (each qubit is connected to 15
different qubits through couplers).

In the Advantage2 Zephyr topology, as in Pegasus and Chimera, qubits are oriented vertically or
horizontally. The Zephyr topology features the same three coupler types as Pegasus, with a total
of 16 internal couplers, 2 external couplers, and 2 odd couplers. In the Zephyr topology, qubits
have a nominal length of 16 (each qubit is connected to 16 orthogonal qubits through internal
couplers) and degree of 20 (each qubit is connected to 20 different qubits through couplers).

Figure 4.4 shows an example of the 20 couplers of a qubit in a Zephyr graph with different colours
for each of the different coupler types: the internal couplers are green, the external couplers are
blue and the odd couplers are red.

Figure 4.4: Zephyr qubit connectivity (source: D-Wave Quantum Systems 2023)
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Qubit state superposition in D-Wave’s QAs comes from the connectivity of qubits combined with
the tunnelling effect. D-Wave QAs also use entanglement of qubit states but this is limited to the
nearest qubits.

4.4. Qubit control technology

Room-temperature electronics generate the qubit control signals, which are multiplexed and sent
in digital format from the outside via coaxial cables into the cryostat to program the Digital-to-
Analogue Converters (DACs) embedded in the QPU (Figure 4.5). The DACs apply static magnetic
control signals locally to the qubits and couplers. There are 5 DACs per qubit for handling qubit
control signals and 6 (D-Wave 2000Q), 15 (D-Wave Advantage) or 20 (D-Wave Advantage2)
coupler DACs per QA.

Figure 4.5: D-Wave QA qubit control signals (source: M.W. Johnson et al. 2009)

Integrated DC ramp pulse generation circuits embedded in the QPU quantum chip use RSFQ
devices (Box 4.1 and Figure 4.6) for implementing the DACs.

Rapid Single Flux Quantum (RSFQ) is a digital electronic device that uses superconducting Josephson
junctions to process digital signals. Josephson junctions are the active elements for RSFQ electronics, just
as transistors are the active elements for semiconductor electronics. In RSFQ logic, information is stored
in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage
pulses.

Box 4.1: Rapid Single Flux Quantum (RSFQ)
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Figure 4.6: RSFQ-based qubit control signal generation (source: E. Leonard et al. 2017)

D-Wave Quantum Systems was the first superconducting qubit manufacturer to use RSFQ
electronics in its systems (since its inception). RFSQ’s advantages for implementing qubit control
are:

 very low power consumption (up to 500 times less than CMOS);

 operating at the same temperature as the superconducting qubits.

The latter advantage means that all the pulse generation electronics can be included in the QPU
chipset, which allows to greatly simplify the coaxial cabling that leads from the classical control
hardware to the QPU. Furthermore, QAs do not have to send microwave pulses to qubits for
controlling quantum gate operations and can thus avoid the related coaxial cables. All in all, the
cabling in a D-Wave QA cryostat is far less complex than in typical superconducting gate-based
quantum computers.

There is however also a downside as RSFQ devices are quite noisy and thus contribute to the noise
affecting the QA’s qubits. D-Wave QAs therefore require frequent (re)calibration (calibration is a
technique to reduce systematic errors in quantum hardware components).

Note
The error rates in D-Wave QAs are not determined in the same way as the error rates in gate-based universal
quantum computers. In a D-Wave QA, the error rate is measured as the precision of the implementation of
the Ising model parameters, which is about 2% given the precision of the D-Wave DACs. This high error rate
can be mitigated to some extent with quantum error correction techniques, post-processing error correction
and machine learning aided error correction.

4.5. Qubit readout technology

Qubit readout is performed as follows. A Quantum Flux Parametron (QFP)-based shift register
moves data from the qubits along linear horizontal and vertical tracks to the perimeter of the QPU.
At each end of every linear horizontal and vertical track there is a Frequency And Sensitivity
Tunable Resonator (FASTR) micro resonator (Figure 4.7). The resonant frequency of each micro
resonator is set by an LC tank circuit (Box 4.2). Part of the resonator inductance is provided by a
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Direct Current SQUID (DC-SQUID) loop that is coupled to the end stage of the QFP shift register
track. Data in the last stage QFP body (circulating or counter-circulating persistent current)
modulates the inductance of the DC-SQUID loop which modulates the micro resonator resonance
frequency.

Each of the micro resonators is connected to one of two microwave transmission lines that follow
the perimeter of the quantum processor. A frequency tone is generated that addresses a particular
micro resonator and the transmission of this tone is monitored. The data state of the shift register
modulates the micro resonator frequency and thus the transmission of this tone. This enables to
quickly read out the state of the shift register via a transmission measurement.

The micro resonators are separated in frequency (frequency multiplexing); this allows to read
out all the micro resonators in parallel.

Figure 4.7: Qubits (Q) and FASTRs (F) (source: D-Wave Quantum Systems 2023)

An LC tank circuit (aka resonant circuit) is an electric circuit consisting of an inductor (represented by the
letter L) and a capacitor (represented by the letter C) connected together. The circuit can act as an
electrical resonator, storing energy oscillating at the circuit's resonant frequency.

Box 4.2: LC tank circuit
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5. D-Wave quantum annealing software

To program a D-Wave QA for solving a given optimisation problem, a user maps the problem into
a search for the “lowest point in a vast landscape” corresponding to the best possible outcome.
The QA considers all the possibilities simultaneously to determine the lowest energy required to
form those relationships. The solutions are values that correspond to the optimal configurations
of qubits found, e.g. the lowest points in the energy landscape. These values are returned to the
user program over the network.

5.1. Ocean Quantum Software Development Kit (QSDK)

D-Wave Quantum Systems’ Ocean Quantum Software Development Kit (QSDK) contains software
development tools, hybrid solvers and a large set of libraries to solve various optimisation and
constraint satisfaction problems (Figure 5.1).

The complexity of quantum programming is abstracted away to enable developers to focus on the
business problem at hand. The Ocean QSDK enables users to formulate problems in the QUBO
and Ising models. Results can be obtained by submitting a quantum job to an online D-Wave QA
or to an hybrid quantum-classical solver in Leap, D-Wave Quantum Systems’ real-time quantum
computing cloud service (which is also accessible on Amazon Marketplace).

Figure 5.1: Ocean development framework (source: Quantum Zeitgeist 2025)
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Ocean QSDK is a suite of open source Python tools and libraries accessible on both the D-Wave
Quantum Systems GitHub repository3 and Leap.

5.2. Leap quantum computing access service

D-Wave Quantum Systems’ Leap quantum computing cloud service provides real-time access to
D-Wave 2000Q and Advantage QA platforms and to the HSS hybrid quantum-classical solver,
both of which are shared resources that continually process user-submitted problems. The
problems are solved in a few milliseconds and the solutions are typically returned within seconds.
D-Wave QAs and HSS can also be accessed via the AWS Marketplace. The Leap quantum cloud
service supports third-party IDEs, both local and cloud-based, that implement the Development
Containers specification (aka “devcontainers”), which allows the use of a container as a full-
featured development environment..

5.3. Hybrid Solver Service (HSS)

D-Wave Quantum Systems launched the Hybrid Solver Service (HSS) in 2020. HSS contains a
portfolio of heuristic solvers that leverage both quantum and classical solution approaches to
solve several generic optimisation problems with various categories of inputs and use cases.
Furthermore, the HSS solvers provide interface support for applications well outside the native
problem formulation, which is quadratic, unconstrained and binary. This interface reduces, and
sometimes completely eliminates, the need for developers to translate their application problems
into a formulation that matches the QA hardware.

Figure 5.2: Hybrid Solver Service (source: D-Wave Quantum Systems 2022)

3 GitHub (a subsidiary of Microsoft) provides internet hosting for source code version control using Git (open-source
software for tracking changes in a set of files). GitHub offers features for source code development projects, e.g.
collaboration among programmers, task management, bug tracking, continuous integration and wikis. It is the
largest source code host for open-source projects.
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The Binary Quadratic Model (BQM) solver is for unconstrained quadratic problems defined on
binary variables (taking two values).

The Discrete Quadratic Model (DQM) solver is for unconstrained quadratic problems defined on
discrete variables (taking multiple values).

The Constrained Quadratic Model (CQM) solver expands the optimisation problems that D Wave
QAs can solve. It can solve constrained problems defined on binary, integer and real variables with
up to 500,000 variables and up to 100,000 constraints.

The DQM and CQM solvers are part of efforts by D-Wave Quantum Systems to expand the scope
of models that can be solved directly in HSS, without needing additional translation to BQMs.
These solvers can be more convenient to use and, in some cases, can deliver better hybrid
performance than the BQM solver.

A solver in the HSS portfolio incorporates a hybrid quantum-classical workflow. Each solver has a
classical front end that reads an input Q and (optionally) a time limit T. It then invokes one or
more hybrid heuristic solvers (computation threads) to search for good-quality solutions to Q
(Figure 5.3).

Figure 5.3: HSS hybrid quantum-classical workflow (source: D-Wave Quantum Systems 2022)

The HSS solvers are designed in such a way that the QPU always has a chance to speed up
convergence. However, this does not necessarily mean that quantum speed-up always occurs,
because some inputs are easily solved heuristically without needing a quantum boost, and some
inputs may have complex structures that resist quantum speed-up.

The heuristic solvers run in parallel on CPU and/or GPU platforms. Each of them contains a classic
module, which explores the solution space, and a quantum module, which formulates quantum
queries that are sent to a back-end D-Wave QPU.
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Replies from the QPU are used to guide the heuristic module toward more promising areas of the
search space, or to find improvements to existing solutions. Each heuristic sends its best solutions
to the front end before the time limit is reached, and the front end forwards best results to the
user.

5.4. Comparison of BQM, DQM and CQM solvers

A comparison of the currently available features for BQM, DQM and CQM solvers is provided in
Table 5.1.

Table 5.1: Feature comparison of HSS solvers (source: D-Wave Quantum Systems 2022)

Notes
[1] Variables are represented as BINARY, INTEGER and REAL types.

[2] The BQM solver uses case restriction for constraints involving forbidden combinations of values assigned
to variables or pairs of variables.

[3] For BQM and CQM solvers, the maximum number of variables is also limited by the maximum number of
biases.

[4] For BQM and CQM solvers, the number of biases is the number of nonzero weights on all nodes and edges
of the input graph; for DQM this is the number of all nonzero weights on all cases assigned to nodes and
edges.

D-Wave Quantum Systems compared the relative performance of its BQM, DQM and CQM solvers.
Such a performance comparison requires testing of problems that can be translated to run on all
three solvers. Reformulating problems from BQM to DQM to CQM is straightforward. However,
reformulating problems from CQM to DQM to BQM can sometimes be prohibitively complicated.
For this reason, D-Wave Quantum Systems elected three problem test sets that are simple enough
to allow easy translation in both directions:
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1. The BQM problem test set comprises 15 inputs from the MQLib problem repository of MaxCut
and QUBO inputs. These unconstrained binary inputs represent a variety of application
domains and contain N ∈ [1200 . . . 2500] variables.

For a given graph, the Maximum Cut (MaxCut) is a cut whose size is at least the size of any other cut.
That is, it is a partition of the graph's vertices into two complementary sets, such that the number of
edges between them is as large as possible. Finding such a cut is known as the Maximum Cut Problem
aka MaxCut Problem (MCP).

Box 5.1: MaxCut problem

2. The DQM problem test set consists of 15 inputs from the DIMACS graph colouring problem
repository. The graph colouring problem is to assign colours to nodes of a graph, so that no
two edge endpoints have the same colour, in a way that minimises the total number of
different colours used. These inputs come from a variety of applications and have sizes
N ∈ [74 . . . 561].

The graph colouring problem involves assigning colours to certain elements of a graph subject to
certain restrictions and constraints. The process of assigning colours to the vertices such that no two
adjacent vertexes have the same colour is called graph colouring aka vertex colouring.

Box 5.2: Graph colouring problem

3. The CQM problem test set consist of 15 randomly generated inputs for the TSP problem. The
TSP problem is to assign a “visit index” (first, second, etc.) to nodes in a graph, to minimise
the total weight of edges between successively visited nodes, under the constraints that each
node is visited exactly once and that each index is assigned exactly once. These inputs have
sizes N ∈ [35 . . . 63], and uniform edge weights in [1, 2N].

The Travelling Salesperson Problem (TSP) is an optimisation problem where a salesperson must visit a
given set of cities exactly once, starting and ending at the same city. The goal is to find the shortest
possible route that covers all the cities and returns to the starting point.

Box 5.3: TSP problem

The outcome of the solver performance comparison is shown in the Figure 5.4. The area between
box endpoints corresponds to the middle 50% of the distribution, horizontal lines within the boxes
are medians, and lines and individual points outside the boxes show the distribution tails and
outliers.

Note
As currently deployed, the BQM solver always returns a single solution, while the DQM and CQM solvers may
return multiple solutions, depending on input properties and internal configurations. The best-quality
solution returned with a 5 minute time limit was recorded for the purpose of performance comparison.

The BQM solver (blue) performs best on the MQLib test set and shows the worst performance on
the DIMACS Graph Coloring test set. The CQM solver (teal) performs best on the TSP test set and
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shows the worst performance on the MQLib test set. These outcomes show the importance of
choosing the right solver for the task at hand.

Figure 5.4: Performance comparison of HSS solvers (source: D-Wave Quantum Systems 2022)

The overall conclusion is that, because CQM is able to represent constraints explicitly, it tends to
be more efficient than BQM and DQM at finding good-quality feasible solutions to constrained
problems. However, unconstrained binary problems can be more efficiently solved by BQM.

D-Wave Quantum Systems has performed performance testing for different CQM solver releases,
including algorithmic improvements to existing test problems. It was shown that the CQM solver’s
performance significantly improved with each new CQM release. It is expected that the CQM solver
will eventually replace the DQM solver in HSS.

5.5. Examples of problem solving with BQM, DQM and CQM

The definition of a problem to be solved includes the following four steps:

1. Defining the decision variables.

2. Entering the information necessary to describe the problem as constants (if needed).

3. Defining the problem constraints (if any).

4. Formulating the objective function.

Figure 5.5 provides examples of MaxCut problem solutions for the BQM, DQM and CQM solvers:

(a) BQM problem solution with 2 values (teal and orange);

(b) DQM problem solution with 4 values (orange, teal, purple and blue);
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(c) CQM problem solution with constraints (defined on integer variables assigned to graduation
of colours).

Figure 5.5: MaxCut problem solution examples (source: D-Wave Quantum Systems 2022)

Problem solving with BQM

The BQM graph (a) in the Figure 5.5 shows a simple BQM MaxCut problem. The nodes of the graph
are variables and the edges represent interactions between pairs of variables. A solution to the
problem corresponds to an assignment of values (in this case colours) to the nodes of the graph.
This is a binary problem because only two values 0 (teal) or 1 (orange) can be assigned to the
nodes.

The edges of the graph are assigned numbers, called biases, that express preferences for certain
value combinations on endpoint nodes. In this example, a solid edge has negative bias, expressing
preference for same values (0,0) or (1,1), and a dotted edge has positive bias, expressing
preference for different values (1,0) or (0,1). Assume that the length of an edge indicates the
magnitude of the bias and the strength of the preference.

Each possible solution has a quality score S, computed according to how well the assignment
satisfies the preferences expressed by biases. This is a quadratic problem because calculation of
S incorporates edge and node biases, whereas a linear problem only considers node biases. The
MaxCut problem is, given a graph and its biases, to find an assignment of binary values to nodes
that maximises S.

Variations on this abstract problem arise in many real-world application areas, for example:

 VLSI circuit design

Nodes represent circuit components and edge biases represent preferences that components
be located on “same” or “different” design layers. An optimal MaxCut solution assigns
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components to two layers (0 or 1) in a way that minimises the cost of wires needed to connect
components within and between the layers.

 portfolio allocation

Nodes represent financial assets available for purchase. Node biases represent expected
returns, and edge biases represent price correlations (positive or negative) between asset
pairs. A robust portfolio minimises risk by using diversification to maximise negative
correlations within a group of selected assets. An optimal solution to this problem divides the
assets into two groups (“select” and “omit’), to maximise return and minimise risk in the
selected set.

 social network analysis

Nodes represent people, and edge biases represent friendly and hostile encounters between
them. An optimal solution to the “community detection” problem assigns people to two groups
to maximise a score measuring friendly relationships within groups, and hostile relationships
between members of different groups.

Imagine that the edge biases represent friendly (solid) and hostile (dotted) encounters among
citizens of twelfth-century Verona in Italy. The computational problem is to assign citizens to
the groups Montague (0, teal) and Capulet (1, orange), to maximise the MaxCut score S. The
BQM graph (a) in Figure 5.5 shows one possible solution.

Researchers in social network analysis study the number of “frustrated” edges in an optimal
solution, i.e. hostile encounters within a group or friendly encounters between members of
different groups. For example, Juliet is friendly with both Romeo and her father, but Romeo
and Lord Capulet have a hostile relationship: any assignment must frustrate at least one edge
of this triangle. In another example, Mercutio has a hostile relationship with both groups, so
some edges must be frustrated no matter which group he is in. A high number of frustrated
edges in an optimal solution is a sign of structural imbalance, which is associated with
increased potential for clashes, violence, and perhaps even tragedy.

Problem solving with DQM and CQM

Suppose now that the BQM graph (a) and the DQM graph (b) in the Figure 5.5 represent solutions
to a social network analysis problem which involves four different social groups in Verona and
Florence: Capulet=orange=1, Montague=teal=2, Medici=purple=3, and Albizzi=blue=4. DQMs
and CQMs may be defined directly on discrete and integer variables which allows the user to
circumvent both problems. In this context, discrete refers to categorical values such as colours or
surnames, whereas integer refers to numerical values.

Although it is technically possible to formulate this problem as a BQM, techniques for doing so
would involve replacing each node in the original graph with four binary nodes (one for each
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possible value assignment), creating a four-fold increase in problem size. It would also require
rewriting the objective function to ensure that at exactly one of each binary combination (node,
value) is selected. Using the DQM or CQM solvers allows the user to circumvent the problem of
expanding input size and the inconvenience of problem reformulation.

Problem solving with constraints

In the previous example problem the notational differences between DQM and CQM formulations
are small: in DQM the four values are called cases, and the input would contain lists of valid cases
that can be assigned to each node; in CQM the input would specify valid ranges of integers [0 … 3]
for each node.

The primary difference between the CQM solver and BQM and DQM is that CQM offers a rich
language for expressing constraints, i.e. rules about what constitutes a feasible (valid) solution to
the problem. In contrast, all solutions to (unconstrained) BQMs and DQMs are considered feasible.
While it is technically possible to incorporate constraints in objective functions for BQM and DQM
formulations, the constraint language of CQM is much more convenient to use. In addition, the
direct approach gives the CQM solver a performance edge by allowing it to recognise and avoid
infeasible regions of the solution space. Furthermore, representation of more realistic models can
greatly improve the practical value of solutions found by the CQM solver.

To illustrate this point, suppose that the CQM graph (c) in the Figure 5.5 describes city features
including a river (blue line), a duomo (large green square), and two palazzi (square nodes). With
integer variable it becomes possible to express constraints involving (linear) sums of node and
edge weights, (quadratic) sums of products of nodes and edge weights, and sums of node values.
Rules such as the following can be expressed using this interface:

 the two palazzi must be assigned to two different families;

 the five nodes surrounding the duomo cannot all be from the same family;

 every family must be assigned to at least 8 and no more than 12 nodes;

 no more than half the edges across the river can have endpoints assigned to different families.

Problem solving with integer and real variables

The CQM solver supports representation of continuous models defined on real-valued variables
as well as integers and binaries. Models containing real variables are typically found when the
values to be assigned to nodes represent locations in space or time.

Note
As a general rule, problems that are naturally defined in terms of real values are best solved using continuous
models. However, the CQM solver currently supports a broader set of integer constraints than real
constraints, and therefore, formulation as an integer model may be the only available option in some cases.
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However, development of the CQM solver progresses rapidly and the variety of supported constraint types is
expected to increase in future versions.

An input to a Job Shop Scheduling (JSS) problem consists of a list of jobs to be performed. There
are five jobs (gold, orange, green, blue, teal).

Each job is divided into a sequence of tasks (coloured blocks numbered 0, 1, 2, 3 and 4) of varying
durations (indicated by block widths). Each task is performed using a specific machine (A, B, C, D
and E) in the shop.

There is one variable per task, and the values assigned to tasks are their start times. The
optimisation problem is to assign a start time to each task so as to minimise the total makespan
(Box 5.4), i.e. the time between the start of the first task and the finish of the last task, while
obeying two constraints:

 within a job, each task must finish before its successor task can start; in Figure 5.6, all tasks
of the same colour obey this constraint;

 a machine can perform only one task at a time; in Figure 5.6, no machine is assigned tasks
that overlap in time.

Figure 5.6: Real vs. integer JSS variables (source: D-Wave Quantum Systems 2022)

In Operations Research (OR), the makespan of a project is the length of time that elapses from the start
of work to the end. This type of multi-mode resource constrained project scheduling problem seeks to
create the shortest logical project schedule, by efficiently using project resources, adding the lowest
number of additional resources as possible to achieve the minimum makespan.

Box 5.4 Makespan
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In the top version of Figure 5.6 where real values are assigned to the task start time variable, a
task can start immediately after its predecessor ends. In the bottom version, where integers are
assigned to the task interval variable, time is divided into discrete intervals, e.g. one hour each,
and tasks are assigned to the start of each interval.

A comparison of the top and bottom solutions shows that requiring each task to start at the top
of the hour creates wasted time whenever a task finishes early. The use of integers instead of
reals increases the total makespan by about 16 percent (from 14.71 to 17 hours).

Variations on the JSS problem may be found in many real-world applications, for example:

 work crew scheduling

The “jobs” are construction sites, each consisting of certain tasks (HVAC installation,
plumbing, flooring, painting, etc.) to be performed, in a specified order. The “machines” are
specialised work crews that travel from site to site (one site per day) to perform the tasks. The
optimal schedule assigns days to work crews, to minimise the time to complete construction
at all sites.

 airport scheduling

Arrival of an aircraft at an airport consists of a sequence of steps requiring exclusive use of
certain airport resources: approach on path A, land on runway B, taxi across runway
intersections C and D, and so forth. The “jobs” are the aircraft, the tasks are the arrival steps,
and the “machines” are the airport resources and/or ground crew members necessary to each
step. An optimal schedule assigns times to each step to minimise the total time required for
all incoming flights to arrive at their gates.

5.6. NL-Hybrid Solver

In 2024, D-Wave Quantum Systems added the Nonlinear-Program Hybrid Solver (NL-Hybrid) to
its HSS solver portfolio. NL-Hybrid allows for the definition of variables in more advanced formats.
In addition to allowing variables defined as binary and integer values, NL-Hybrid permits the
definition of the following types of decision variables:

 list (number_variables)

The solver can use a list as the decision variable to optimise, this list being an ordered
permutation of size number_variables describing a possible itinerary.

 set (number_variables)

The decision variable can be a set, being a subset of an array of size number_variables,
representing possible items included in a knapsack.
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 disjoint_list (n_variables, n_lists)

The solver can employ a disjoint_list as the decision variable, which divides a set of n_variables
into n_lists disjoint ordered partitions, each representing a permutation of variables. This
encoding is appropriate for complex logistic problems such as the Vehicle Routing Problem
(VRP).

There is a variant of this variable, called disjoint_bit_sets, where the order of the produced
partitions is not semantically meaningful.

Like CQM, NL-Hybrid permits linear, quadratic, inequality and equality constraints, expressed
even arithmetically. This aspect represents a significant contribution compared to the BQM and
DQM hybrid solvers.

Benefits of using NL-Hybrid over the other HSS solvers (BQM, DQM and CQM) are:

 In the field of optimisation, whether by means of classical or quantum systems, the
performance of a solver is closely tied to the size of the solution space of the problem at hand.
Generally, algorithms perform better in smaller solution spaces. Therefore, employing
decision variables that act as implicit constraints is an effective way to reduce the solution
space and the complexity of the problem. For example, using list (number_variables) to
represent a TSP problem implicitly ensures that no nodes are visited more than once along
the route. For this reason, the use of the aforementioned decision variables is a significant
advantage for NL-Hybrid.

 NL-Hybrid is built to manage low-level operational specifics, eliminating the need for users
to have any expertise in properly parameterising the QPU.

 NL-Hybrid accepts inputs that are much larger than those of other solvers focused on solving
problems in QUBO format and even larger than those of the rest of the solvers within HSS. NL-
Hybrid is intended to take advantage of the QPU’s capability to quickly find promising
solutions, expanding this property to a wider range of input types and sizes than would
otherwise be feasible.

 NL-Hybrid provides a user-friendly use of quantum resources, allowing the user to model a
problem in an intuitive way. This is an advantage in comparison to QUBO, which is the native
formulation for QPUs, mainly because translating a problem to this binary formulation is often
a challenging task . In fact, inefficient translation can critically affect the performance of the
solver.

The existence of NL-Hybrid does however not imply the complete deprecation of the other HSS
solvers. Depending on the characteristics of the problem to be solved and the decision variables
used, NL-Hybrid may not always be the most efficient solution (for example, BQM or CQM solvers
might be more suitable for problems primarily composed of binary variables). The objective for
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the development of NL-Hybrid was not to replace the existing HSS solvers, but to complement
them.

5.7. dwave-hybrid

For quantum annealing developers who prefer to implement their own hybrid approaches to
combining quantum and classical computation, D-Wave Quantum Systems offers dwave-hybrid,
an open-source Python framework with support for building hybrid workflows that interface with
D-Wave QAs..

5.8. Quantum Macro Assembler (QMASM)

Quantum Macro Assembler (QMASM) is a low-level language specific to D-Wave QAs4.

QMASM fills a gap in the software ecosystem of D-Wave QAs by shielding the programmer from
having to know system-specific hardware details while still enabling programs to be expressed at
a fairly low level of abstraction. It is therefore analogous to a conventional macro assembler and
can be used in much the same way: as a target either for programmers who want a great deal of
control over the hardware or for compilers that implement higher-level languages.

Some relevant QMASM language features:

 allows programs to refer to variables symbolically;

 accepts arbitrary values for the function coefficients and automatically maps those onto what
is accepted by the underlying hardware;

 provides shortcut syntax for biasing two variables to have the same value (or, respectively, the
opposite value);

 supports macros to facilitate code reuse;

 allows sets of macros to appear in a separate file that can be included into a main program
routine.

4 This tool used to be called "QASM" but was renamed to avoid confusion with MIT’s QASM, which is used to describe
quantum circuits (a different model of quantum computation from what the D-Wave QAs use), and the IBM Q QASM
language (now OpenQASM) language, which is also used for describing quantum circuits.
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Appendix B - Acronyms and abbreviations

µm micrometre

µs microsecond

µW microWatt

ADC Analogue-to-Digital Converter

AI Artificial Intelligence

aka also known as

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

APP APPlication

arg argument

AQC Adiabatic Quantum Computing

AVaQus Annealing-based Variational Quantum processors

AWS Amazon Web Services

bit binary digit

BQM Binary Quadratic Model

c celeritas

C Capacitance
Capacitor

CC Creative Commons

CCJJ Compound-Compound Josephson Junction

cjj compound Josephson Junction

CIM Coherent Ising Machine

CMOS Complementary-Metal Oxide Semiconductor

CNRS Centre national de la recherche scientifique



Quantum Annealing Explained

Page 50 of 55

Commun. Communications

comp. compound

CPU Central Processing Unit

CQM Constrained Quadratic Model

cryostat from cryo meaning cold and stat meaning stable

CU Control Unit

DA Digital Annealer

DAC Digital-to-Analogue Converter

DARPA Defense Advanced Research Projects Agency

dc direct current

DC Direct Current

DC-SQUID Direct Current SQUID

DIMACS Center for Discrete Mathematics and Theoretical Computer Science

DQM Discrete Quadratic Model

E Edge
Energy

e.g. exempli gratia

EDFA Erbium-Doped Fiber Amplifier

EDP Electronic Data Processing

et al. et alia

etc. et cetera

EU European Union

F FASTR

FASTR Frequency And Sensitivity Tunable Resonator

FPGA Field-Programmable Gate Array

fs femtosecond

GB GigaByte
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GHz GigaHerz

GPU Graphics Processing Unit

GQI Global Quantum Intelligence

h Planck constant

ћ reduced Planck constant (aka Dirac constant)

ℋ Hamiltonian

HQS Honeywell Quantum Systems

HSS Hybrid Solver Service

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

HVAC Heating, Ventilation, and Air Conditioning

i imaginary number

I current

i.e. id est

IARPA Intelligence Advanced Research Projects Activity

IBM International Business Machines

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IFAE Institut de Física d'Altes Energies

IM Intensity Modulation

Inc. Incorporated

Intel Integrated Electronics
IPHT Leibniz Institute of Photonic Technology

IR Instruction Register

JPL Jet Propulsion Laboratory

JSON JavaScript Object Notation

JSS Job Shop Scheduling
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k kilo

KIT Karlsruhe Institut für Technologie

kW kiloWatt

L inductance

lab laboratory

Lab Laboratory

LAN Local Area Network

LC Inductance-Capacitance

LO Local Oscillator

LS Locking Signal

Ltd. Limited

m mass

M Million

max maximum

Max Maximum

MaxCut Maximum Cut

MCP Maximum Cut Problem

min minimum

MIT Massachusetts Institute of Technology

mK milliKelvin

mV milliVolt

N photon number

NASA National Aeronautics and Space Administration

NEC Nippon Electric Company

next gen next generation

NL-Hybrid Nonlinear-Program Hybrid Solver

nm nanometre

NOREA Nederlandse Orde van Register EDP-Auditors
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NP Nondeterministic Polynomial

NTT Nippon Telegraph and Telephone

NumPy Numerical Python library

OPO Optical Parametric Oscillator

OpenQASM Open Quantum Assembly language

OR Operations Research

OS Operating System

P Polynomial
Power
Pump

PC Personal Computer
Program Counter

PLL Phase-Locked Loop

PLO Phase-Locked Oscillator

PM Phase Modulation

PO Parametric Oscillator

PPLN Periodically Poled Lithium Niobate

PPLO Parametric Phase-Locked Oscillator

ps picosecond

PUBO Polynomial Unconstrained Binary Optimization

PZT Lead Zirconate Titanate (“Lead” is “Plumbum” in Latin)

Q Qubit

QA Quantum Annealer
Quantum Annealing

QAFS Quantum Annealing Feasibility Study

QAP Quadratic Assignment Problem

QASM Quantum Assembly Language

QCP Quantum Critical Point

QEO Quantum-Enhanced Optimization
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QFP Quantum Flux Parametron

Qibocal Qibo calibration

Qibojit Qibo just-in-time

Qibolab Qibo laboratory

Qibosoq Qibo server on QICK

QICK Quantum Instrumentation Control Kit

QM Quantum Module

QMASM Quantum Macro Assembler

QMC Quantum Monte Carlo

QML Quantum Machine Learning

QP Quadratic Programming

QPU Quantum Processing Unit

QSDK Quantum Software Development Kit

QuAIL Quantum Artificial Intelligence Lab

QUBO Quadratic Unconstrained Binary Optimization

qubit quantum bit

rf-SQUID radio-frequency Superconducting Quantum Interference Device

RFSoC Radio Frequency System-on-Chip

RSFQ Rapid Single Flux Quantum

s second

SA Simulated Annealing

SaaS Software-as-a-Service

SAPI Solver API

SB Simulated Bifurcation

SBM Simulated Bifurcation Machine

SFQ Single Flux Quantum

SHG Second-Harmonic Generation

SL Sociedad Limitada

sq SQUID
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SQBM Simulated Quantum Bifurcation Machine

SQUID Superconducting Quantum Interference Device

SRAM Static Random-Access Memory

t time

T Time

TB TeraByte

TCO Total Cost of Ownership

TSP Traveling Salesperson Problem

U energy potential

UBC University of British Columbia

UI User Interface

UK United Kingdom

V Vertex
Voltage

VA Vector Annealing

VCO Voltage-Controlled Oscillator

VE Vector Engine

VLSI Very Large-Scale Integration

VRP Vehicle Routing Problem

vs versus

vs. versus

W Watt

WAN Wide Area Network

x location
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