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1. Introduction

Note
The reader must have reasonable knowledge of mathematics, physics and classical computing, as well as
basic knowledge of quantum computing (as for example included in the articles ‘Quantum Computing
Explained’, ‘Quantum Annealing Explained’ and ‘Quantum Software Development Tools’ published by the
NOREA Taskforce Quantum Computing).

The first quantum algorithm was already developed in 1992 by the British physicist David Elisier
Deutsch and the Australian mathematician Richard Jozsa at a time when quantum computers were
not yet available (Figure 1.1). Since then, quantum hardware has caught up with quantum
algorithms, but even today, many of the quantum algorithms that are invented are not yet
executable on a large problem scale on current quantum computers or on classical computing
quantum emulators.

Figure 1.1: Quantum algorithm timeline (source: Olivier Ezratty 2024)

The Deutsch-Jozsa quantum algorithm and Simon's quantum algorithm (developed in 1994 by
the American computing security scientist Daniel R. Simon) demonstrated that quantum
computers could solve specific problems exponentially faster than classical computers.

Quantum computing has the potential to solve some types of complex (aka “exponential” aka
“hard”) problems that are currently intractable for classical computers. With its fundamental
principles rooted in quantum mechanics, this technology opens up new possibilities for
computational power and algorithmic advancements.
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Quantum computing use cases fall in three main categories (Figure 1.2):

1. fundamental research;

2. applied research;

3. business operations.

Figure 1.2: Quantum computing use cases (source: Olivier Ezratty 2024)

In general, three important types of problems are well-suited for solving with quantum
computing: simulation, optimisation and machine learning. (Generic) quantum algorithms have
been conceived for solving these problems.

When developing quantum applications, the problem to be solved by the use of quantum
computing must be determined first. After the problem has been analysed and properly
understood, the next step is to design the quantum algorithm and then design and specify the
corresponding quantum circuit, i.e. the set of qubits, the sequence of operations (quantum gates)
to be performed on these qubits, and the qubit measurements yielding the (classical) outcome of
the quantum computation.

Qubits can be in state ∣0⟩, in state ∣1⟩ or in a linear combination (superposition) α∣0⟩ + β∣1⟩ of
both states. The amplitudes α and β correspond with the probabilities that their measured value
is either “0” or “1”. The trick in devising an algorithm for a quantum computer is to choreograph
a pattern of constructive and destructive interference for its qubits, so that for each wrong answer
the contributions to these qubit amplitudes cancel each other out, whereas for the right answer
the contributions reinforce each other. If, and only if, that can be arranged, the right answer will
be obtained with a large probability when reading the quantum computer’s qubits. The difficulty
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is to do this without knowing the answer in advance and, of course, significantly faster than could
be done with a classical computer.

Quantum computing is inherently probabilistic, requiring executing several times a quantum
calculation and averaging the obtained results. One run of a quantum algorithm is probabilistic
but by running the quantum algorithm many times, progressive convergence to a deterministic
solution will be achieved (the solution being the average of all run results). The number of runs
needed is typically in the order of hundreds or thousands. Experience shows that this number will
grow with the number of qubits used (hopefully only linearly).
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2. Quantum algorithm taxonomy

Note
This article describes only quantum algorithms that can be used as building blocks for quantum algorithms
that support specific quantum business applications.

2.1. Low-level quantum algorithms

Today not that many quantum algorithms have been developed compared with the enormous
amount of existing classical computing algorithms. Furthermore, most high-level quantum
algorithms that have been developed are based on a relatively small set of low-level quantum
algorithms and related techniques (Figure 2.1).

Figure 2.1: Use of quantum algorithm primitives (source: Pablo Arnault et al. 2024)

The quantum algorithm toolbox (Figure 2.2) includes the following well-known elementary
quantum algorithms.
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Figure 2.2: Quantum algorithm toolbox (source: Olivier Ezratty 2024)

Grover's algorithm

Grover's algorithm aka quantum search algorithm, invented by the Indian-American computer
scientist Lov Kumar Grover, is a quantum algorithm for unstructured search that finds with high
probability the unique input to a black box function that produces a particular output value. Given
its quantum circuit requirements, implementation of Grover’s algorithm requires an FTQC
quantum computer (Box 2.1) to be useful, i.e. to solve search problems of practical problem sizes.

Qubits are vulnerable to perturbances caused by the environment in which they operate, causing
decoherence of the qubit’s quantum state. Quantum Error Correction (QEC) is seen as the solution to
the qubit decoherence problem. QEC enables sets of noisy physical qubits (imperfect qubits) to emulate
stable logical qubits (perfect qubits) so that the quantum computer behaves reliably. Fault-Tolerant
Quantum Computers (FTQCs) are quantum computers made more robust through deployment of QEC
and other fault reduction techniques (e.g. reliable error correction, reliable qubit readout, etc.).

Box 2.1: Fault-Tolerant Quantum Computer (FTQC)

Quantum Fourier Transform (QFT)

QFT, invented by the American mathematician and computer scientist Don Coppersmith in 1994,
is the quantum equivalent of Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT)
classical Fourier transform (Box 2.2) algorithm. An inverse QFT is a QFT executed backwards, with
its quantum gates serialised in reverse order. Many other quantum algorithms are using QFT,
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including QPE and HHL. To be useful, QFT requires a FTQC quantum computer with a large number
of low-error qubits.

The Fourier transform is a mathematical decomposition of a time domain signal into elementary single
frequency signals with their frequency, amplitude and phase. It is a complex value function of time with,
for each frequency, a magnitude (real part) and a phase offset (complex part) of the sinusoid of this
elementary frequency. The inverse Fourier transforms that frequency decomposition function back into
its original compound signal. Fourier series were invented by the French mathematician and physicist
Jean-Baptiste Joseph Fourier.

Box 2.2: Fourier transform

Quantum Phase Estimation (QPE)

QPE, invented in 1995 by the Russian-American theoretical physicist Alexei Yurievich Kitaev, is
based on QFT and modular exponentiation to find the eigenvalues (Box 2.3) or eigenvalues’ phase
of a unitary matrix or quantum sub-circuit. It is used in many other linear algebra quantum
algorithms.

A system's set of energy eigenvalues, or its energy spectrum, is the set of possible outcomes obtainable
from a measurement of the system's total energy. The word “eigenvalue” is derived from the German
word "eigen", meaning "inherent" or “characteristic".

Box 2.3: Eigenvalue

Shor’s algorithms

Based on QFT/QPE, the American mathematician Peter Williston Shor invented the period-finding
quantum algorithm and the quantum algorithms for solving the factoring and discrete logarithm
(dlog) problems, both of which are instances of the period-finding algorithm.

Quantum Amplitude Estimation (QAE)

The QAE quantum algorithm is used to amplify and select the desired state, i.e. the amplitudes,
of a quantum superposition. It is used for solving combinatorial search and optimisation problems
like the TSP problem (Box 2.4).

The Travelling Salesperson Problem (TSP) is an optimisation problem where a salesperson must visit a
given set of cities exactly once, starting and ending at the same city. The goal is to find the shortest
possible route that covers all the cities and returns to the starting point.

Box 2.4: TSP problem
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Quantum Amplitude Amplification (QAA)

The QAA quantum algorithm is used to change the probability distribution modelled by a quantum
state by increasing the probability of measurement of so-called marked items. It was created by
Lov Grover to improve his algorithm for unstructured search.

Quantum numerical solvers

Quantum algorithms have been developed for so-called “numerical solvers”. This includes linear
equation (Box 2.5) quantum solvers such as the HHL quantum algorithm (Box 2.6) and other
numerical quantum solvers, such as the Partial Differential Equation (PDE) solving quantum
algorithm (Box 2.7).

A linear equation is of the form a1x1 + a2x2 + … anxn + b, where xi are the variables (unknowns), and b

and ai are the coefficients. Linear equations are frequently used in physics, partly because non-linear
systems are often well approximated by linear equations.

Box 2.5: Linear equation

The Harrow, Hassidim and Lloyd (HHL) quantum algorithm, named after the American physicist Aram
Wettroth Harrow, the Israeli computer scientist Avinatan Hassidim and the American mathematician and
philosopher Seth Lloyd, calculates the inverse of a large matrix.

Box 2.6: HHL quantum algorithm

A partial derivative of a function of several variables is its derivative with respect to one of those
variables, with the others held constant (as opposed to the total derivative, in which all variables are
allowed to vary). Partial derivatives are for example used in vector calculus.

Box 2.7: Partial derivative

Binary Quadratic Model (BQM)

The BQM model defines an objective function (Box 2.8) that is to be optimised with binary
variables, a quadratic component and linear constraints.

An objective function is either a cost function (aka loss function) or a profit function (aka reward
function), which an optimisation problem seeks to minimise (cost function) or maximise (profit
function).

Box 2.8: Objective function
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Many combinatorial and optimisation problems such for example the Ising model aka Lenz-Ising model
(named after the German physicists Ernst Ising and Wilhelm Lenz) and Quadratic Unconstrained
Binary Optimization (QUBO) problem can be translated or converted into BQM.

Hamiltonian simulation

Hamiltonian (Box 2.9) simulation is used to find a point of equilibrium of a complex system such
as in quantum physics simulation, neural networks training, searching for optimal paths in
networks or process optimisation.

The Hamiltonian of a quantum system, named after the Irish mathematician and physicist William Rowan
Hamilton, is an operator corresponding to the total energy of that system, including both kinetic energy
and potential energy.

Box 2.9: Hamiltonian

Hamiltonian simulation can be implemented in all quantum paradigms: quantum annealing,
analogue quantum computing and universal gate-based quantum computing. In the latter case,
this is commonly done with a QPE quantum algorithm on a FTQC quantum computer (Box 2.2) or
with a VQE quantum algorithm on a NISQ quantum computer (see Chapter 3).

Trotterization, aka Trotter-Suzuki decomposition, named after the Canadian-American
mathematician Hale Freeman Trotter and the Japanese physicist Masuo Suzuki, is a classical
computing method that decomposes the unitary time operator of quantum dynamics simulation
in small discrete steps. The method lends itself naturally to developing a similar decomposition
on quantum computers: the Trotterization quantum algorithm. This quantum algorithm is
currently thought to be unfeasible for long time evolution quantum dynamics simulation on a
NISQ quantum computer because the complexity of the quantum circuit grows exponentially with
the size of the quantum system to be simulated and the width and depth of the quantum circuit
(Box 2.10) grows linearly with the time span.

The quantum circuit width is the number of qubits (some quantum circuits are narrow while others are
wide); the quantum circuit depth is the number of quantum gates (some quantum circuits are shallow
while others are deep). This is a bit confusing because in most graphical representations of quantum
circuits, the qubits are shown from top to bottom and the quantum gates are shown from left to right.

Box 2.10: Quantum circuit width and depth

2.2. Some examples of high-level quantum algorithms

Several different if not inconsistent quantum algorithm classification schemes are used in the
available literature. The following paragraphs provide a brief overview of some high-level
quantum algorithms in each of the following categories:
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 oracular;

 quantum simulation;

 quantum optimisation;

 quantum machine learning.

Oracular

Oracular quantum algorithms, aka oracle-based quantum algorithms, include Grover’s search
algorithm and many variants to solve combinatorial optimisation problems. Examples: TSP
problem (Box 2.4), MaxCut problem (Box 2.11) and quantum walks (Box 2.12).

The Maximum Cut (MaxCut) problem is an optimisation problem in which the nodes of a given
undirected graph have to be divided in two sets such that the number and weight of edges connecting
nodes of the same type are maximised.

Box 2.11: Maximum Cut problem

A random walk is a random process that describes a path that consists of a succession of random steps
in some mathematical space. Quantum walks are quantum analogues of classical random walks. In
contrast to classical random walks, where the walker occupies definite states and the randomness arises
due to stochastic transitions between states, in quantum walks randomness arises through either
quantum superposition of states, non-random, reversible unitary evolution of the quantum system or
collapse of the quantum wave function due to quantum state measurements. A quantum algorithm for
solving quantum walks was invented in 1993 by Yakir Aharonov (Israeli physicist) et al.

Box 2.12: Quantum walks

Oracular quantum speedup claims nearly never take into account the potential computing
overhead imposed by the oracle itself. In an ideal world, oracle implementation complexity should
scale linearly or at worst polynomially with the number of handled qubits. But the practical oracle
scaling overhead could be highly detrimental to any potential theoretical quantum speedup.

Quantum simulation

Quantum simulation algorithms have many and widely different applications (Figure 2.3). They
are for example used to simulate the interaction between atoms in molecules for the creation of
new materials and they can simulate physical phenomena related to magnetism or the interaction
between photons and matter (this amounts to solving "N-body problems", i.e. calculating the
interaction between several particles according to the physical laws governing their interaction).
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Figure 2.3: Quantum simulation applications (source: Olivier Ezratty 2024)

Quantum optimisation

Quantum optimisation algorithms (Figure 2.4) usually solve a decision problem, which consists in
determining (i.e. deciding) whether there exists a solution to the given problem.

Figure 2.4: Comparison of optimisation methods (source: Olivier Ezratty 2024)

Obtaining efficient optimisation algorithms has become the focus of much research interest since
current developing trends in machine learning and cutting-edge applications require complex
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optimised models containing a huge number of parameters. At present, classical computers are
inefficient for solving many of such complex and wicked optimisation problems. Quantum
computers are seen as the solution but this technology is currently still at an early stage.

Quantum-Inspired Algorithms (QIAs) have emerged trying to fill the gap between the theoretical
and real quantum computing capabilities. QIAs use classical computers to simulate some quantum
phenomena such as superposition and entanglement in order to perform simulated quantum
computations. Notable QIA examples are:

 Simulated Quantum Annealing (SQA): SQA outperforms classical simulated annealing for
certain problems. It represents a new classical computational strategy that emulates quantum
annealing dynamics.

 QIAs for linear algebra, for example: quantum-inspired recommendation system algorithms,
quantum-inspired Principal Component Analysis (qPCA) algorithm (Box 2.13), quantum-
inspired supervised clustering algorithm, quantum-inspired low-rank stochastic regression
algorithm and quantum-inspired sublinear algorithm for solving low-rank linear systems.

The qPCA quantum algorithm is a quantum-enhanced version of the classical Principal Component
Analysis (PCA) algorithm, designed to work on quantum datasets. It identifies principal components
as quantum states, leveraging quantum computing to efficiently process high-dimensional data and
potentially offer speedups over classical methods. qPCA is crucial for dimensionality reduction in
quantum datasets, preserving essential data structure while reducing features. It has applications in
quantum machine learning, data compression and visualisation, offering benefits in handling
complex quantum correlations and uncovering hidden patterns in quantum information.

Box 2.13: qPCA quantum algorithm

Quantum machine learning

Various quantum algorithms have been created in the last decades that cover the field of machine
learning, with a lot of variations in neural networks and deep learning. Quantum Machine Learning
(QML) algorithms, which are considered a subset of QAI tools (Box 2.14 and Figure 2.5), are either
targeting NISQ platforms with variational quantum algorithms or FTQC platforms with linear
algebra-based algorithms.

Quantum Artificial Intelligence (QAI) is a very broad computational field that contains QML, quantum
reasoning, Quantum Automated Planning and Scheduling (QPS), Quantum Natural Language Processing
(QNLP), Quantum Computer Vision (QCV), and Quantum Multi-Agent Systems (QMAS). Note that solving
decision problems also belongs to the field of QAI but is not necessarily implemented with QML
techniques.

Box 2.14: Quantum Artificial Intelligence (QAI)



Quantum Algorithms

Page 14 of 34

Figure 2.5: QAI tools (source: Olivier Ezratty 2024)

The four models defined for QML (Figure 2.6) are:

1. Classical-Classical (CC): classical data that is processed by classical algorithms; this is classical
Machine Learning (ML).

2. Classical-Quantum (CQ): classical data that is encoded in quantum states and processed by
Variational Quantum Algorithms (VQAs), which combine a quantum algorithm and a classical
algorithm that drives it (see Chapter 3). Such VQAs may need the use of a quantum RAM
(qRAM).

3. Quantum-Classical (QC): quantum data that is converted in a classical form and processed by
classical algorithms; they are used to analyse quantum physics and for obtaining quantum
sensor measurement statistics, e.g. for qubit tomography.

4. Quantum-Quantum (QQ): quantum data that is processed by quantum algorithms which could
be implemented by feeding a QML algorithm directly with quantum data coming from a
quantum sensor or another Quantum Processing Unit (QPU).
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Figure 2.6: The four models of QML (source: Olivier Ezratty 2024)

Several challenges remain to be addressed to operationalise QML on future FTQC quantum
computers:

 Loading training data may take time and has a negative impact on the acceleration provided
by QML. It also requires qRAM which does not yet exist.

 Nonlinear activation functions such as sigmoids used in classical neural networks are difficult
to implement in quantum algorithms since quantum gates only apply linear transformations
(a sigmoid is any mathematical function whose graph has a characteristic S-shaped curve).

 Acceleration provided by QML is hard to evaluate, particularly given that all QML techniques
are hybrid in nature. In many cases, benchmarks tend to favour a comparison in the quality of
the results (e.g. minimising an error function and error rates) rather than proving a quantum
speedup.

 QML privacy protection and QML algorithm explainability differs from classical machine
learning privacy protection and algorithm explainability, but these topics should nevertheless
be adequately addressed.
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3.  Variational quantum algorithms

Today, many of the quantum algorithms that have been invented are not yet executable on a
large problem size on current NISQ quantum computers (Box 3.1). There are simply not enough
qubits with high fidelity (error-corrected) qubits available for NISQ quantum computers to be
more powerful than classical computers (Figure 3.1).

Noisy Intermediate-Scale Quantum (NISQ) computing is a term, coined by the American theoretical
physicist John Phillip Preskill in 2012, that applies to current state-of-the-art quantum computers. The
term “noisy” refers to the fact that these quantum computers are very sensitive to perturbances caused
by the surrounding environment and may lose their quantum state due to quantum decoherence
because they are not sophisticated enough to implement QEC. The term “intermediate-scale” refers to
the not-so-large number of qubits.

Box 3.1: Noisy Intermediate-Scale Quantum (NISQ)

Figure 3.1: FTQC qubit number and fidelity requirements (source: Olivier Ezratty 2023)

Instead of waiting for the availability of powerful FTQC quantum computers, researchers have
investigated approaches for taking advantage of currently available NISQ quantum computers.

The most famous of these algorithms are the so-called Variational Quantum Algorithms (VQAs).
Many problems of interest, in particular problems in quantum chemistry, can be framed as
so-called eigenvalue problems. According to the variational principle of quantum mechanics,
the computed energy of the ground (lowest-energy) state of a quantum system decreases as
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the approximations to the solution improve, asymptotically approaching the true value from
above. This principle has given rise to iterative classical algorithms for solving these problems,
where a crude guess of the solution is the input, and a somewhat improved approximation is
the output. This output is then used as the guess for the next iteration and with each cycle, the
output gets closer and closer to the true solution (but never overshooting).

This approach can be split between a classical and a quantum algorithm, with the iteration step
performed by a quantum processor and a classical control step deciding whether to perform
another iteration (figure 3.2). The ability to separate the quantum processing among many
small, independent steps, with qubit coherence required only over the course of a single
quantum computing step, makes this approach a clever way to reduce qubit fidelity
requirements and still obtain useful results.

Figure 3.2: VQA components (source: J.W.Z. Lau et al. 2022)

VQAs require a Parameterized Quantum Circuit (PQC) that takes in a set of parameters. It is
typically known as the “ansatz” (German for “approach”) as it refers to a trial quantum state used
as a starting point for approximations.

The VQA class of quantum algorithms includes:

 Variational Quantum Eigensolver (VQE) quantum algorithm for quantum physics
simulations, invented in 2013 by Alán Aspuru-Gurzik (Mexican chemical engineer and
computer scientist) et al. VQE is a NISQ alternative for QPE which requires a FTQC.
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 Quantum Approximate Optimization Algorithm (QAOA) quantum algorithm for various
combinatorial optimisation tasks, invented in 2014 by the American physicist Edward Henry
Farhl. Though NISQ-based QAOA is limited to the use of shallow quantum circuits, it remains
a promising candidate for quantum speedup. Its performance can also been improved by
using a variant known as adaptive QAOA.

Note
A QAOA quantum algorithm often relies on a Quantum Alternating Operator Ansätze (QAOA) component,
which is the ansatz quantum circuit that is used by a variational algorithm. Use of the QAOA acronym
may therefore be confusing.

There are some key differences but QAOA also shares similarities with quantum annealing.
One looming question is whether QAOA on gate-based universal quantum computers is more
efficient than QUBO on quantum annealers.

Apart from solving combinatorial optimisation problems, QAOA can be generalised to a form
that allows for universal quantum computation.

 Variational Quantum Linear Solver (VQLS) quantum algorithms for solving linear
equations.

 Variational Quantum Simulator (VQS) quantum algorithms for simulation of the
Hamiltonian evolution of a quantum system.

 variational QML quantum algorithms for various machine learning and deep learning tasks.

All of these variational quantum algorithms are heuristic algorithms that provide near-optimal
solutions to the problems at hand.

VQA quantum algorithms must overcome the so-called “barren plateau” problem, which
prevents convergence unless the ansatz quantum circuit is shallow. It is the equivalent of
avoiding local minima traps in classical machine learning when a global minimum is searched
but difficult to reach. Barren plateaus are induced by various factors including the number of
qubits, gate types, circuit depth, circuit initialisation, measurement types and qubit noise.
Research to eliminate this problem is ongoing, e.g. adding additional parameters and
constraints to improve gradients in the variational training loop without resorting to inefficient
overfitting or with using tensor networks to create the parametrised quantum circuit.

Note
NISQ-based quantum algorithms can be made less susceptible to “noise”, i.e. more resistant to quantum
state decoherence, by means of Quantum Error Mitigation (QEM) and/or quantum error suppression (the
latter could be implemented in the quantum algorithm itself). QEM denotes a collection of techniques for
reducing errors by combining classical post-processing (often based on quantum computation results)
with quantum circuit modifications (optimisations). Quantum error suppression denotes a collection of
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error reduction that can be implemented in the quantum computer firmware or by appropriate quantum
algorithm design.

Another issue with VQA algorithms is that the choice of PQC (ansatz) is often problematic. An
optimal PQC should be both expressible, i.e. capable of reaching most parts of the Hilbert space
(Box 3.2) and trainable. Unfortunately, the more expressive the PQC is made, the less trainable
it becomes.

Hilbert spaces (named after the German mathematician David Hilbert) allow the methods of linear
algebra and calculus to be generalised from finite-dimensional Euclidean spaces (named after the
ancient Greek mathematician Euclid) to spaces that may be infinite-dimensional. Formally, an Hilbert
space is a vector space equipped with an inner product that induces a distance function for which the
space is a complete metric space. A qubit state is represented by a vector in a 2-dimensional Hilbert
space.

Box 3.2: Hilbert space

Note
Quantum-assisted algorithms have been developed for Hamiltonian simulation on NISQ quantum
computers. They are also hybrid quantum-classical algorithms but differ from VQAs in that they (1) do not
rely on a classical feedback loop and (2) do not use a PQC (thus avoiding the “barren plateau” problem).
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4. Quantum speedup

The quantum speedup, i.e. the acceleration provided by a quantum algorithm compared to the
best-in-class classical algorithm for solving a particular “hard” problem, depends on the types of
quantum gates used by the quantum algorithm (Figure 4.1).

Figure 4.1: Quantum speedup (source: Olivier Ezratty 2024)

The Gottesman-Knill theorem (named after the American physicist Daniel Gottesman and the
American mathematician and computer scientist Emanuel Knill) states that quantum algorithms
using only so-called “digital quantum gates” belonging to the Clifford group (named after the
British mathematician and philosopher William Kingdon Clifford) can be emulated in polynomial
time on a classical computer. Therefore, non-Clifford quantum gates (so-called “analogue
quantum gates”) must be used by a quantum algorithm to obtain any quantum speedup.

The Clifford group contains the CNOT gate, the 90º and 180º CR gates, the H gate (named after
the French mathematician Jacques Salomon Hadamard), the 90º and 180º R gates, the S gate (aka
P gate), the SWAP gate, the T gate, and the X, Y and Z Pauli gates (named after the Austrian
physicist Wolfgang Ernst Pauli).

Examples: QFT based algorithms, including Shor’s dlog and integer factoring algorithms, provide
an exponential speedup because QFT uses R gates other than 90º and 180º, which are non-Clifford
quantum gates. Grover’s search algorithm provides only a quadratic speedup because it uses H
gates, which are Clifford quantum gates.

Note
Even if quadratic speedup is considered as a minor gain in algorithm complexity theory, it can still have a
non-negligible practical value and make use of quantum computing worthwhile.
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Besides using non-Clifford quantum gates, quantum algorithms also provide exponential
speedup if they handle maximally entangled states (Figure 4.1), which means that there is a
correlation of states between a set of qubits in the qubit register until the end of the quantum
computing. If a quantum algorithm handles islands of disconnected sets of qubits in the qubit
register, the speedup will be constrained by the size of these islands. The bigger the island, the
bigger the Hilbert space managed by the algorithm. Absolutely Maximally Entangled (AME) states
are multipartite quantum states and carry absolute maximum entanglement for all possible qubit
register partitions.

Note
While we cannot use entanglement and the quantum teleportation mechanism to transmit classical data
faster than light, it appears that entanglement is interconnecting qubits nearly instantaneously during
computing while they are affected by qubit gates. This “entanglement nonlocality” is also claimed to
provide quantum speedup, but this is still widely disputed among quantum computing experts.

The complexity class of an algorithm as well as the speedup provided by a quantum algorithm is
commonly expressed in big O notation (Box 4.1), which expresses an upper bound on the time
or space complexity of an algorithm in the worst-case scenario.

Big O notation is commonly used to classify algorithms into complexity classes according to how their
runtime (time complexity) or memory requirements (space complexity) grow as the problem size (n)
grows. It was invented by the German mathematicians Paul Gustav Heinrich Bachman, Edward Landau
and a few others.

Box 4.1: Big O notation

Figure 4.2: Big O algorithm complexity scale (source: Olivier Ezratty 2024)
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Note
Except for small problem sizes n, problems of complexity class O (n!) are not solvable.

To outperform their classical counterpart(s), quantum algorithms must demonstrate polynomial
speedup or superpolynomial speedup, either weakly superpolynomial or strongly
superpolynomial (aka exponential). There only a few dozen known quantum algorithms supposed
to be capable of achieving such speedups and furthermore, only a small fraction of these
algorithms is commonly used in quantum applications (Figure 4.3).

Figure 4.3: Speedups of common quantum algorithms (source: Olivier Ezratty 2024)

Several factors may limit the theoretical speedup provided by a quantum algorithm (Figure 4.4).
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Figure 4.4: Sources of quantum algorithm runtime slowdown (source: Olivier Ezratty 2022)

The following must be taken into account when evaluating quantum speedups claimed by
quantum computing technologists:

 One should carefully assess when the quantum speedup will occur with respect to the problem
size and corresponding timing. If the quantum algorithm is faster than its best classical
counterpart only with timings exceeding human lifetime, use of quantum computing is
probably meaningless.

 The quantum versus classical comparison must be based on real-life scenarios and not on
worst-case scenarios which can be both unrealistic and unfavourable to classical solutions,
thereby overselling the quantum speedup (there can be huge differences between theoretical
and practical speedups).

 Quantum speedup will be affected by the number of times the quantum circuit must be run
(shot count), which depends on the problem at hand, the number of qubits used, the algorithm
output (integers, real numbers or vector state) and whether NISQ or FTQC quantum computers
are being used. Assessing the real speedup of a quantum algorithm requires adopting an end-
to-end approach considering all the parameters of the quantum algorithm execution time,
otherwise projected quantum speedups may not be realistic.

 Overhead imposed by QEC probably increases more than linearly with the number of logical
qubits deployed and could cause significant loss of projected quantum speedup at large
problem sizes.

 Data preparation (aka data loading) must also be handled, which is of particular importance
for QML and oracle-based quantum algorithms, particularly when they rely on data access
using qRAM. A problem is that even though quantum computers can use a small number of
qubits to represent an exponentially larger amount of data compared to classical computers,
there is currently no method to rapidly convert a large amount of classical data to a quantum
state. For quantum algorithms that require large inputs, the amount of time needed to create
the input quantum state would typically dominate the computation time and greatly reduce
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the quantum speedup. This problem does however not exist if the data can be generated
algorithmically.

 For small problem sizes, quantum algorithm computing time grows faster than its classical
equivalent due to various factors like number of gates per second and data loading time
constraints.

 The complexity of some problems can be addressed on conventional computers with
probabilistic or heuristic approaches, allowing a significant reduction in the computing time
of exponential problems. When moving from this kind of solution to a quantum algorithm,
one probabilistic approach is replaced with another one, since quantum computing is also
usually highly probabilistic and prone to many computing errors. This complicates the
assessment of potential quantum speedups.

 It is very hard to identify the best-in-class classical solution for a given problem, which makes
it difficult to perform a meaningful comparison for assessing a potential quantum speedup.
The fundamental question is: how can we know that there is no classical algorithm that would
have similar scaling behaviour as the quantum algorithm? Though often ignored, this question
is key to quantum algorithm research, where often the difficulty is not so much proving that
a quantum computer can solve computationally hard problems faster than the best known
classical solution (the so-called “gold standard”), but convincingly proving that the latter
cannot do the same. It also turns out to be staggeringly hard to prove that problems are indeed
computationally hard, as illustrated by the famous P versus NP problem (Box 4.2).

The P versus NP problem is considered by many to be the most important open problem in computer
science. It asks whether every problem whose solution can be quickly verified can also be solved
quickly. The informal term “quickly” means the existence of an algorithm solving the task that runs
in polynomial time (as opposed to exponential time), such that the time to complete the task varies
as a polynomial function on the size of the input to the algorithm which solves the problem instance.
The class of questions for which some algorithm can provide an answer in polynomial time is P
(Polynomial). For some questions, there is no known way to find an answer quickly, but if one is
provided with information showing what the answer is, it is possible to verify the answer quickly.
The class of questions for which an answer can be verified in polynomial time is NP
(Nondeterministic-Polynomial).

Box 4.2: P versus NP problem

 Last but not least, achieving quantum speedup must be considered as shooting on a moving
target. On one hand, the speed of quantum algorithm execution is steadily improving with
various techniques (faster quantum gates, parallelising quantum computing onto multiple
QPUs, design of faster quantum algorithms, etc.). On the other hand, classical algorithms and
classical hardware may also improve, and often do so when quantum speedup challenges
classical algorithm designers to improve upon the performance of their algorithms (Figure
4.5). Over the past few decades, conjectured quantum speedups have repeatedly gone away
when classical algorithms were found with similar performance characteristics (this
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phenomenon is called “dequantization”). For example, in 2022 a classical algorithm was
discovered that performs Fourier transforms exponentially faster than the FFT algorithm which
was the best-known classical algorithm at the time.

Figure 4.5: Quantum speedup moving target (source: Olivier Ezratty 2024)

Table 4.1 shows the speedup (acceleration) provided by some well-known quantum algorithms.

Table 4.1: Quantum algorithms and their input and output data (source: Olivier Ezratty 2024)
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5. Quantum supremacy and quantum advantage

The term “quantum supremacy” was introduced in 2012 by John Preskill as: “the point where
quantum computers can do things that classical computers can’t, regardless of whether those
tasks are useful”. According to Preskill’s definition, quantum supremacy refers to a point in time
rather than an ongoing phenomenon, but it is of course still a moving target as quantum
computing technology is evolving. Google claimed in 2019 to have achieved quantum supremacy
but this was only achieved for a very specific esoteric benchmark.

Quantum advantage on the other hand is the goal of demonstrating that a quantum computer can
solve a practical problem that no classical computer can solve in any feasible amount of time
(Figure 5.1). Conceptually, quantum advantage involves both the engineering task of building a
powerful quantum computer and the computational complexity-theoretic task of finding a
problem that can be solved by that quantum computer and has a more than polynomial speedup
over the best known or possible classical algorithm for that task.

Figure 5.1: Quantum supremacy vs. quantum advantage (source: Olivier Ezratty 2022)

While quantum computers give us the opportunity to directly explore a variety of quantum
algorithms and applications, currently available quantum computers have not yet demonstrated
quantum advantage with real-world impact, and we are not confident that we have identified an
application that will allow us to demonstrate quantum advantage in the short term (Table 5.1).

Quantum supremacy/advantage claims have been proclaimed several times (Table 5.2). In all but
a few cases, these claims could not withstand scrutiny by renown quantum computing experts.
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Table 5.1: Quantum computing readiness timeline (source: Olivier Ezratty 2024)

Table 5.2: Quantum supremacy/advantage claims (source: Olivier Ezratty 2024)
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In December 2024, Google claimed that their Willow chip-based quantum computer could
perform a Random Circuit Sampling (RCS) benchmark (based on the one used for their 2019 claim)

in less than 5 minutes, which would require 10 septillion (10 x 1024) years on today’s fastest
supercomputers. Google also suggested that the performance of their quantum computer
validates the existence of parallel universes proposed by the American physicist Hugh Everett III
and popularised by David Deutsch. Several leading quantum physicists have cautioned that this
claim is false.

Despite quantum supremacy/advantage claims, a quantum computer that is powerful and reliable
enough to outperform classical computers at practical applications, like simulating chemistry and
breaking cryptographic codes, is likely still a long way off.

Some renown scientists, including the Dutch theoretical physicist and Nobel Prize winner Gerardus
‘t Hooft, the Russian physicist Mikhail Dyakonov and the Israeli mathematician and computer
scientist Gil Kalai, caution that building a universal quantum computer is most probably unfeasible
because it is not an engineering problem but rather a fundamental scientific problem for which
there exists no solution.
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Appendix B - Acronyms and abbreviations

1Q one-Qubit quantum gate

2D two-Dimensional

2Q two-Qubit quantum gate

μs microsecond

√ square root

A* A star

AI Artificial Intelligence

Aka also known as

AME Absolutely Maximally Entangled

ANF Aramid Nanofiber

AWS Amazon Web Services

bit binary digit

BQM Binary Quadratic Model

C Celsius

C-NOT Controlled-NOT gate

CC Classical-Classical
Creative Commons

CNOT Controlled NOT gate

cons  pro et contra
CQ Classical-Quantum

CR Controlled R gate

CSP Constraint Satisfaction Problem

DFT Discrete Fourier Transform

DL Deep Learning

dlog discrete logarithm

e.g. exempli gratia

EDP Electronic Data Processing
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et al. et alia

etc. et cetera

F Fahrenheit
Fredkin gate

FFT Fast Fourier Transform

FT Fourier Transform

FTQC Fault-Tolerant Quantum Computer

GAN Generative Adversarial Network

GBS Gaussian Boson Sampler
Gaussian Boson Sampling

GUROBI Gu, Rothberg and Bixby

H Hadamard gate

HHL Harrow, Hassidim and Lloyd

i.e. id est

IBM International Business Machines

IDA* Iterative Deepening A star

K constant

K Kilo

Li Lithium

LLM Large Language Model

Log logarithm
logarithmic

LP Linear Programming

MaxCut Maximum Cut

min minimum

MIS Maximal Independent Set
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ML Machine Learning

MIP Mixed Integer Programming

MZ Mach-Zehnder

n! factorial n

NISQ Noisy Intermediate-Scale Quantum

NOREA Nederlandse Orde van Register EDP-Auditors

np nanoscale porosity

NP Nondeterministic-Polynomial

ns nanosecond

o objective function

O big O
objective function

OQC Oxford Quantum Circuits

OR Operations Research

P Phase change gate
Polynomial

params parameters

PCA Principal Component Analysis

PDE Partial Differential Equation

PQC Parameterized Quantum Circuit

pros  pro et contra

Q Quantum

Q. Quantum

QAA Quantum Amplitude Amplification

QAE Quantum Amplitude Estimation

QAI Quantum Artificial Intelligence

QAOA Quantum Alternating Operator Ansätze
Quantum Approximate Optimization Algorithm

QC Quantum-Classical

QCBM Quantum Circuit Born Machine
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QCNN Quantum Convolutional Neural Network

QCV Quantum Computer Vision

QEC Quantum Error Correction

QEM Quantum Error Mitigation

QFT Quantum Fourier Transform

QGAN Quantum Generative Adversarial Network

QGLM Quantum Generalized Linear Model

QIA Quantum-Inspired Algorithm

QINN Quantum Invertible Neural Network

QMARL Quantum Multi-Agent Reinforcement Learning

QMAS Quantum Multi-Agent Systems

QMC Quantum Monte Carlo

QML Quantum Machine Learning

QML-TDA QML Topological Data Analysis

QNLP Quantum Natural Language Processing

qPCA quantum-inspired Principal Component Analysis

QPE Quantum Phase Estimation

QPS Quantum Automated Planning and Scheduling

QPU Quantum Processing Unit

QQ Quantum-Quantum

qRAM quantum Random-Access Memory

QSLA Quantum Linear Systems Algorithm

QSP Quantum Signal Processing

QSVD Quantum Singular Value Decomposer

QSVT Quantum Singular Value Transformation

qubit quantum bit

QUBO Quadratic Unconstrained Binary Optimization

R Rotational gate

RAM Random-Access Memory

RCS Random Circuit Sampling

RNN Recurrent Neural Network

RSA Rivest-Shamir-Adleman
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RSA-2048 2048-bit RSA

S Phase change gate
Sulphur

SAT Satisfiability problem

SDP Semidefinite Programming

SLSB Selected Least Significant Bit

SQA Simulated Quantum Annealing

SVM Support-Vector Machine

T half phase change gate

TABU TABUlar

TDA Topological Data Analysis

telecoms telecommunications

TSP Travelling Salesperson Problem

U Unitary

VQA Variational Quantum Algorithm

VQE Variational Quantum Eigensolver

VQLS Variational Quantum Linear Solver

VQS Variational Quantum Simulator

X Pauli X gate

XEB Cross-Entropy Benchmarking

Y Pauli Y gate

Z Pauli Z gate
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