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Paradigm shift

Paradigm: a distinct set of concepts or thought patterns, including 
theories, research methods, postulates, and standards for what 
constitutes legitimate contributions to a field (Wikipedia).

“A new scientific truth does not triumph by convincing its 
opponents and making them see the light, but rather because its 
opponents eventually die, and a new generation grows up that is 
familiar with it.“ – Max Planck 

Kuhn, T. (1963). The Structure of Scientific Revolutions.

May 5, 2017 Data Science I 3



May 5, 2017 Data Science I 4



May 5, 2017 Data Science I 5



Paradigm shift in (IT) auditing

 Current approach based on obsolete paradigm
 Defined, static and controlled environment

 Sample testing and test of controls

 Application controls / general IT controls

 New approach should be based on new paradigm
 Fluid, dynamic, uncontrolled environment

 100% substantive testing, also for controls

 Data analytics / machine learning
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Old wine in a new bottle?

 “Nothing new here. Auditors have used data for at least 100 
years and digital data for at least 50 years.”

 True. And the next 10 years, they will start to use:
 enormous amounts of

 structured and unstructured,

 internal and external data

 from many different sources

 using algorithms, artificial intelligence, machine learning.
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Effect of computerisation on audit
 Frey & Osborne, 2013
 Probability computerisation

will lead to job losses
within the next two decades
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Predictive modeling and machine learning
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Use of analytics lower than expected

 Wang, T. and Cuthbertson, R. (2014). Eight Issues on 
Audit Data Analytics We Would Like Researched. Journal 
of Information Systems. Vol. 29. No. 1. pp. 155-162.

 Acceptance and utilization of traditional and nontraditional 
computer-assisted audit techniques (CAATs) or, more 
specifically, data analytics for an audit, is lower than expected.

 Reasons:
 Lack of confidence in own abilities

 Organizational pressure and technical infrastructure

 Performance expectancy and facilitating conditions
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Big data analytics in financial audit

 Cao, M., Chychyla, R. and Stewart, T. (2015). Big Data 
Analytics in Financial Statement Audits. Accounting 
Horizons. Vol. 29. No. 2. pp. 423–429.

 Big data analytics is the process of inspecting, cleaning, 
transforming, and modeling big data to discover and 
communicate useful information and patterns, suggest 
conclusions, and support decision making.

 Big data has been used for advanced analytics in many 
domains but hardly, if at all, by auditors.

 Hypothesis: Big data analytics can improve the efficiency and 
effectiveness of financial statement audits.
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Dealing with the paradigm shift
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Basic statistics
 Deviation = X – µ

 Difference from mean µ for single value

 Variance σ2 = E[ (X – µ)2 ]
 Average of squared deviation for series of values

 Standard deviation σX = √ E[ (X - µ) 2 ]
 Square root of variance

 Covariance COV(X,Y) = E[ (X – E[X]) * (Y – E[Y]) ]
 Average of products of deviations for x and y

 Measure of joint variability of x and y

 Correlation ρX,Y = COV(X,Y) / SD(X) * SD(Y)
 Covariance divided by product of standard deviation for x and y

 Square root of b from regression analysis
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R

 So many tools. Which one to choose?
 Focus on one language: R
 R most widely used and rising
 Widely used by companies and universities
 Very effective in data manipulation / ETL
 Strong visualisation
 Open source, thousands of packages available
 After a year, learn Python too
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Asking the right question
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Descriptive

Exploratory

Inferential

Predictive

Causal

Mechanistic

Just describe the data – “how many debtors”

Explore the data to find patterns that support a hypothesis – “can we find a 
relation between debtor characteristics and risk of default”

Test the hypothesis on representative sample – “does our hypothesis hold
for a representative sample of debtors across Europe”

Determine predictors
“Predict risk of default based on debtor location”

Find out why there is a relation between variables
E.g. “Why do debtors from northern countries have a higher risk?”

Find out the exact mechanism that causes a specific phenomenon
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Visualisation
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Lekker 
bezig



Expanding the data space: Big Data
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Internal data External data

Structured
data

Unstructured
data

ERP
S&OP

Salesforce

G/L Invoices

HR

Subject Matter Experts

Analyst reports

XBRL Receipts?

Email

Intranet

File shares

Sharepoint

Location
Websites

Social Media

TV / Radio News

Sensor data



Examples of (big) data analytics
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Reducing customer churn

Predicting maintenance

Identifying cross-sell
opportunities

Reducing loan defaults

Identifying fraud

Predicting railroad
switch failures
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Conventional data Big data

What?

Technology

Profiles

- ‘Traditional’ data volumes (< 1 TB)
- Data structure determined in advance

- Data Warehouse
- Excel, R, SPSS, Python, SQL

- Data engineers, architects
- DBA, BI-specialists

- Data Lake
- Hadoop, MapReduce, Python, Spark  

- Data engineers, architects
- Data scientists

Examples
- SAP entries on projects
- Reports
- Data about storage goods

- Transaction data
- Sensor data
- Public transport tap-in tap-out data
- Internet of Things

- Large data volumes (>1TB)
- Conventional techniques no longer fit, 

due to volume, velocity or complexity



Machine learning

 Arthur Samuel (1959): Machine learning is the field of study that gives
computers the ability to learn without being explicitly programmed

 Main types of machine learning:
 Supervised – “train” algorithm with question/answer pairs

 Unsupervised – algorithm finds its own way

 Reinforcement – algorithm gets feedback as it navigates through

problem space

 Machine learning: solving known problems
 Data mining: discovering unknown patterns
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Machine learning techniques

 Regression
 Decision trees
 Neural networks
 Bayesian networks
 Nearest neighbors
 Cluster analysis
 Anomaly detection
 Deep learning
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Nice vids

IBM Watson:
https://www.youtube.com/watch?v=_Xcmh1LQB9I

Google Machine Learning: 
https://www.youtube.com/watch?v=l95h4alXfAA
https://www.youtube.com/watch?v=_rdINNHLYaQ
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Call for action

How can we deal with the paradigm shift?

Dust off statistics
Master the tools of the trade

Become a leader in data munging and wrangling

Invest in yourself!
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